4270

RECEIVED ROCKFORD REGION

NOV 0 1 1989

Environmental Protection Agency
State of Illinois

SOIL GAS SURVEY
OF UNDERGROUND STORAGE TANKS AT
SUNTEC INDUSTRIES

MAY 1, 1989

RECEIVED
MAY - 4 1989
IEPA-DLPC

PREPARED BY:

ENVIRONMENTAL RESOURCES MANAGEMENT-NORTH CENTRAL, INC.
102 WILMOT ROAD, SUITE 300
DEERFIELD, ILLINOIS 60015
PROJECT NO.: 9059

RECEIVED

NOV 3 1989

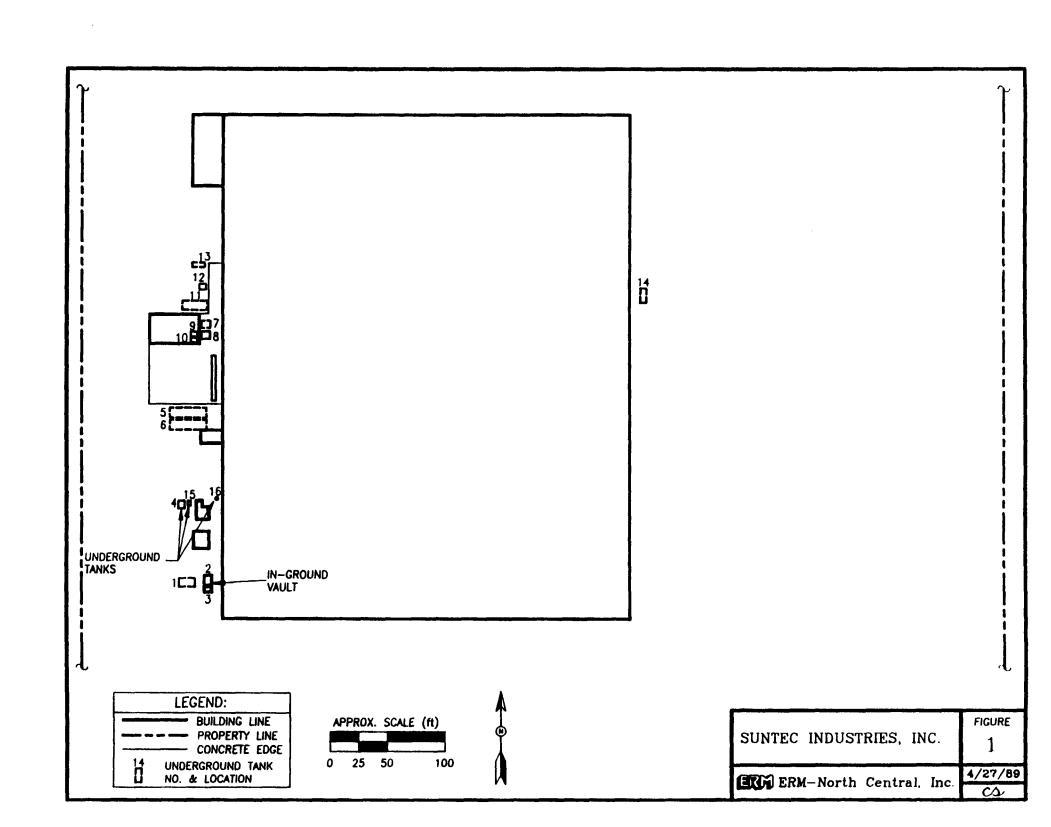
IEPA/DLPC

TABLE OF CONTENTS

SECTION NO.	TITLE	PAGE NO.
1.0	INTRODUCTION	1
2.0	SURVEY METHODOLOGY	2
3.0	SURVEY RESULTS	2
4.0	SURVEY CONCLUSIONS AND RECOMMENDATIONS	4
5.0	PHASE II INVESTIGATION WORK PLAN	5
5.1 5.2 5.3 5.4	Vertical Extent of Contamination Soil Gas Survey Tank No. 4 Closure In-Place Closure Activities	5 6 7 8
6.0	PHASE II INVESTIGATION SCHEDULE	8

RECEIVED ROCKFORD REGION

NOV 0 1 1989


Environmental Protection Agency,
State of Illinois

SOIL GAS SURVEY OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES

1.0 INTRODUCTION

The Suntec Industries, Inc. (Suntec) facility located at 2210 Harrison Avenue, Rockford, Illinois utilized twelve underground storage tanks and two (2) in-ground, vaulted storage tanks for storage of raw materials used in the manufacturing process, waste materials and motor fuels. This facility also utilizes two (2) underground tanks (Tanks Nos. 5 and 6) for storage of fuel oil used for building spaceheating. These tanks were not included in the program activities described in this The locations of all storage tanks are shown in Figure All tanks were emptied and cleaned in preparation for Sampling and analysis of soils in the immediate vicinity of these tanks revealed the presence of gasoline components (Tank No. 4) and oils and solvents (Tank Nos. 7, 8, Based on this analytical data, a notification of potential release from these underground tanks was made to the Illinois Environmental Protection Agency (IEPA) by Suntec on February 9, 1989.

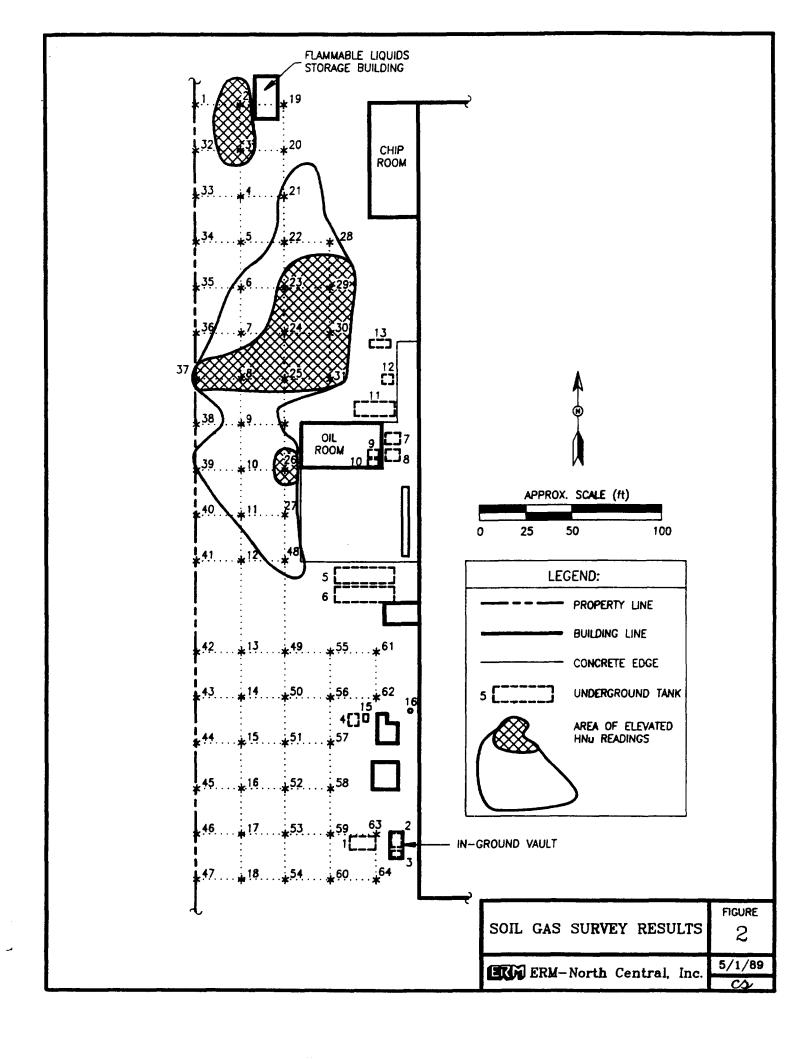
A work plan for an initial investigation of the degree and extent of contamination resulting from the reported releases was prepared and submitted on March 17, 1989 in response to an IEPA request dated February 17, 1989. This initial investigation, performed by Environmental Resources Management-North Central, Inc. (ERM), consisted of a soil gas survey of the western portion of the facility property containing the underground storage tanks.

The following sections of this report describe the survey methodology, presents all survey data, conclusions and recommendations, and proposes additional investigative steps based on survey results.

2.0 SURVEY METHODOLOGY

The objective of this survey was to determine the lateral extent of any near-surface soil contamination through the collection and screening of soil gas for volatile organics. A 25 foot by 25 foot grid network tied to the western property line was used to locate the gas sampling points. The soil gas procedure requires driving a perforated stainless steel probe into the soil and pulling a known quantity of soil vapor through a Teflon tube sampling train. An HNu photoionization detector is used to obtain field measurement of volatile organic concentrations in the soil gas. Activated carbon sampling tubes are utilized to absorb and collect the soil gas components, primarily volatile Subsequent carbon tube desorbtion and organic compounds. laboratory analysis is used to qualitatively identify the gas components.

3.0 SURVEY RESULTS


HNu meter readings were recorded for all gas sampling points. Gas samples were collected on activated carbon tubes from selected sampling nodes where field HNu readings exceeded 5 Vppm. A total of 64 gas sampling points were tested in the survey. Carbon tube samples were obtained at ten (10) locations, and were analyzed for specific volatile organics.

Appendix A presents all HNu meter readings recorded during the survey. A representation of the areal extent of measured elevated levels of volatile organics, based on survey data, is shown in Figure 2. These areas have been subdivided to indicate the location and size of areas where HNu meter readings exceeded 5 Vppm. Areas where HNu readings exceeded 10 Vppm are shown as cross-hatched areas in Figure 2.

The cross-hatched area immediately west of the Oil Room contained the highest survey meter reading, 95 Vppm. Meter readings in the area located west of the Tank Nos. 12 and 13 ranged from 4 to 20 Vppm. Meter readings in this area generally decreased with distance from the underground tanks. The cross-hatched area adjacent to the Flammable Liquid Storage Building contained volatile organic vapor levels ranging from 10 to 35 Vppm. Survey data indicates that the area of soil contamination extends to the western property boundary at Gas Sampling Points 37 and 39.

The soil gas survey indicated that no significant soil contamination exists at a depth of approximately 4 feet in the southern portion of the underground tank area. Specifically, the survey data indicates that any spillage or leakage of gasoline that may have occurred in the area of Tank No. 4 has not resulted in wide-spread contamination of near-surface soils.

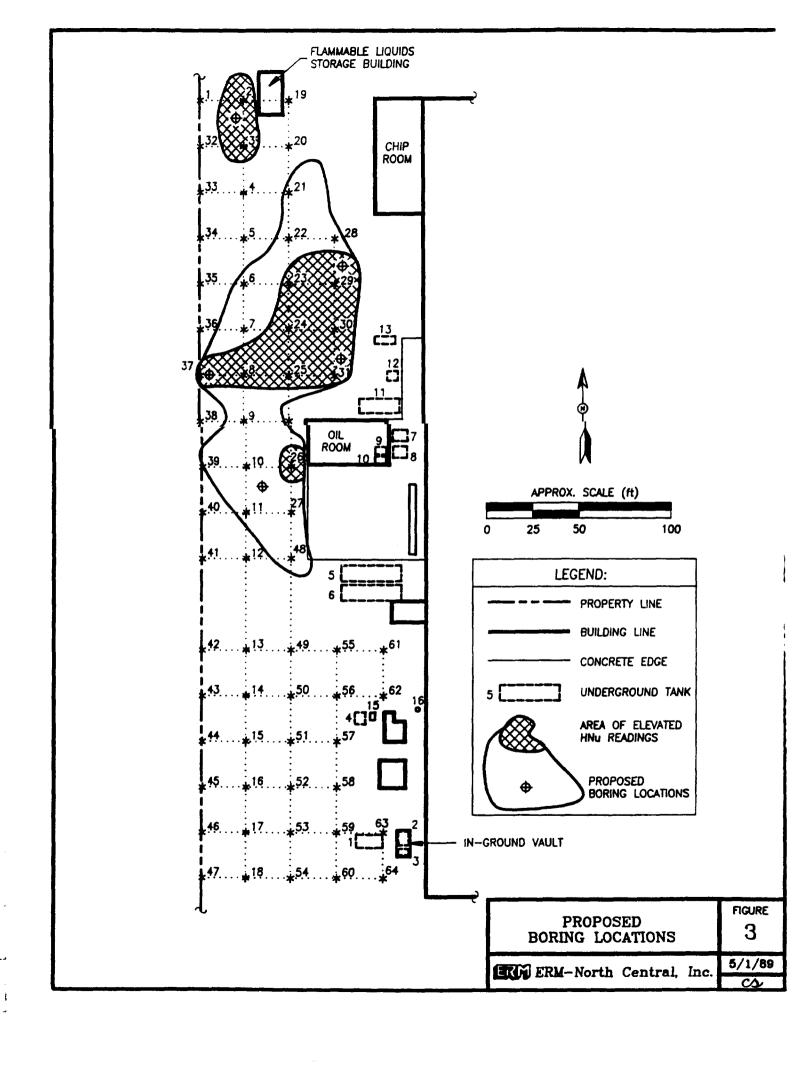
Activated carbon collection tubes were used to identify the soil gas components in the those areas where HNu readings exceeded 10 Vppm. Analysis by the Milwaukee, Wisconsin laboratory of Radian Corporation determined the major gas components to be chlorinated solvents such as trichloroethene, trichloroethane, dichloroethene, and dichloroethane. All laboratory data is presented in Appendix B.

4.0 SURVEY CONCLUSIONS AND RECOMMENDATIONS

The soil gas survey determined that no significant near-surface soil contamination exists in the southern portion of the underground tank area. The data indicated that any spillage or leakage of gasoline that may have occurred in the area of Tank No. 4 has not resulted in wide-spread contamination of near-surface soils. ERM recommends that Suntec proceed with all steps necessary for closure in-place of the underground tanks in the southern portion, except Tank No. 4. We recommend that Tank No. 4 be excavated and soil samples be taken to confirm the presence or absence of significant soil contamination.

The soil gas survey identified three distinct areas of near-surface soil contamination in the northern portion of the underground tank area. The survey data indicated that the identified areas of soil contamination extends to Suntec's western property boundary. ERM recommends that additional testing be performed to determine the vertical extent of contamination in the areas identified by the soil gas survey. Further, we recommend that soil gas testing be used to screen the off-site area and the portion of the facility property to the north that the original survey indicated was potentially contaminated.

5.0 PHASE II INVESTIGATION WORK PLAN

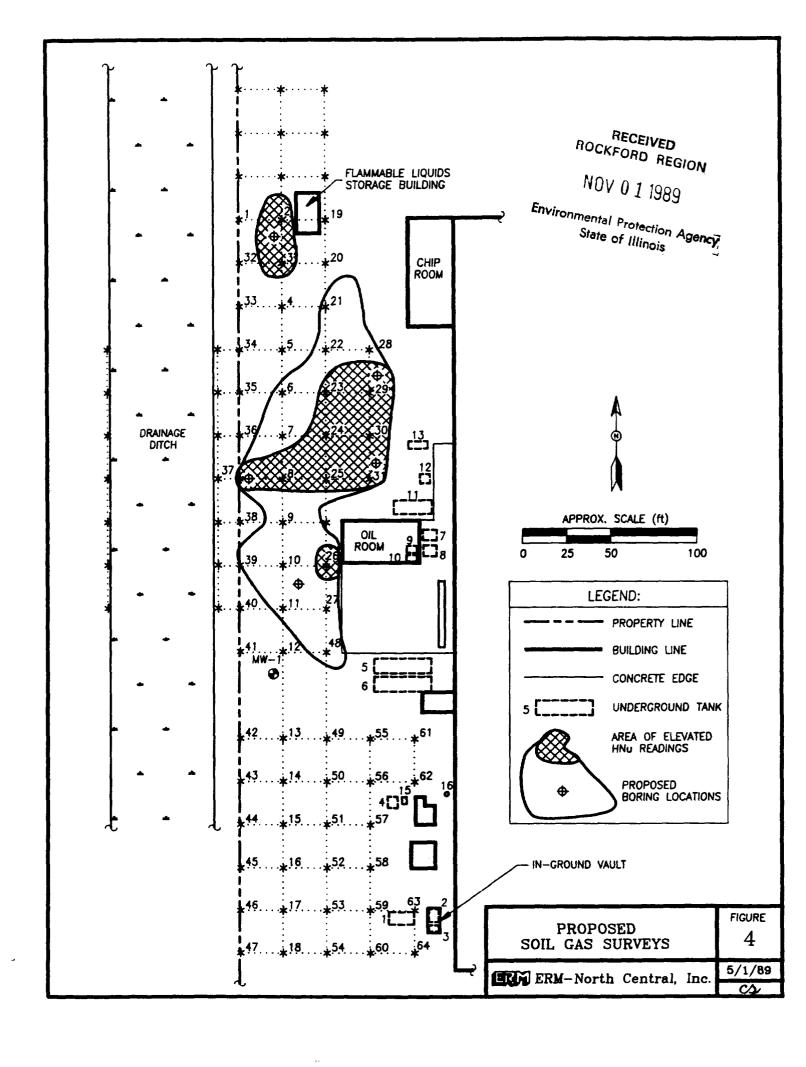

The Investigation Work Plan presented in this section incorporates the recommended actions resulting from the soil gas survey.

5.1 Vertical Extent of Contamination

The vertical extent of contamination in the three (3) areas of near-surface contamination will be determined using a series of five (5) soil borings. The proposed locations for these borings are shown in Figure 3. Actual boring locations will be selected by an ERM geologist based on field conditions. Soil samples will be composited vertically over 2-foot intervals and screened for organics using an HNu photoionization detector. Samples will be obtained from ground surface to a depth where:

- Metering screening indicates the lack of measurable volatile organics, or
- The saturated zone is encountered.

If the HNu screening indicates that soil contamination ends above the ground water table, a soil sample will be submitted for confirmatory laboratory analysis of volatile organics (VOCs) and isopropyl alcohol. These analytical parameters were chosen because Tank Nos 11, 12 and 13, which contained fresh solvent, waste solvent and isopropyl alcohol respectively, are potential sources of contamination. If the HNu screening indicates that soil contamination extends to the ground water interface, 1) a soil sample, taken at the interface, will be submitted for


laboratory analysis of VOCs and isopropyl alcohol, 2) based on site conditions, one of the borings will be converted to a monitoring well, and 3) following well development, a sample of ground water will be taken.

If necessary, ground water samples will also be taken from the facility's eastern boundary to represent upgradient ground water characteristics. The number of ground water samples submitted for laboratory analysis of VOCs and isopropyl alcohol will be determined based on the number and location of monitoring wells installed in order to provide the best characterization of site ground water quality.

5.2 Soil Gas Survey

The initial soil gas survey indicated that there are areas of potentially significant near-surface soil contamination beyond Work Plan includes area investigated. The Phase II performing soil gas surveys in these suspect areas. Figure 4 areas to be included in these the investigations. The area beyond the facility's western boundary to be investigated is approximately 150 feet by 75 feet. facility property to the north of the original survey grid to be investigated is approximately 75 feet by 75 feet.

Two lines of sampling points paralleling the concrete drainage ditch will be used in the vacant land beyond the facility's western boundary. A sampling network, based on a 25-foot by 25-foot grid, will be used in the facility area. The objective of these investigations is to further define the lateral extent of near-surface soil contamination. Therefore, no collection or analysis of gas samples beyond HNu meter screening will be

performed. The survey data will be used to determine if characterization of subsurface conditions is necessary. Any additional investigation can be incorporated into an expanded version of the activities presented in Section 5.1.

5.3 Tank No. 4 Closure

The soil gas survey determined that no significant near-surface soil contamination exists in the southern potion of The closure of Tank No. 4 will follow the underground tank area. procedures presented in Federal regulations governing underground storage tanks. Notification of the intent to close will be made to the Illinois State Fire Marshal's Office thirty (30) days prior to excavation and removal. Overburden soil and backfill material will be screened for the presence of contamination during excavation using an HNu photoionization meter. material producing a meter reading in excess of 10 Vppm will be segregated as contaminated soil for subsequent handling and disposal. Clean overburden and backfill will be set aside for use as excavation backfill. The steel tank will be removed, cut up and disposed of as scrap metal. Following tank removal, the excavation side walls and bottom will be screened contamination using an HNu meter. Soil excavation will continue until field screening indicates that all measurable contamination has been removed. A composite soil sample will be prepared using a minimum of five (5) sampling points located in the excavation bottom and sidewalls. This composite sample will be submitted for laboratory analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and EP Toxicity lead. IEPA Target Cleanup Objectives for Soil will be compared to the sampled analytical data to confirm that no significant soil contamination is present. If laboratory analysis indicates that no significant

contamination exists, the excavation will be backfilled to grade with clean soil and bank run gravel. A report documenting all closure activities will be submitted to the IEPA and the State Fire Marshal's Office.

5.4 In-Place Closure Activities

The soil gas survey determined that no significant near-surface soil contamination exists in the southern portion of the underground tank area. Therefore, application will be made to the State Fire Marshall's Office for closure in-place of Tank Nos. 1 and 15. This application will include an engineer's opinion that excavation of the volume of material necessary to expose and remove these tanks would structurally endanger nearby facility buildings.

Following approval of the in-place closure application, both tanks will be filled with an inert solid and the excavations backfilled to grade. A report documenting all in-place closure activities will be prepared and submitted to the IEPA and the State Fire Marshall's Office.

6.0 PHASE II INVESTIGATION SCHEDULE

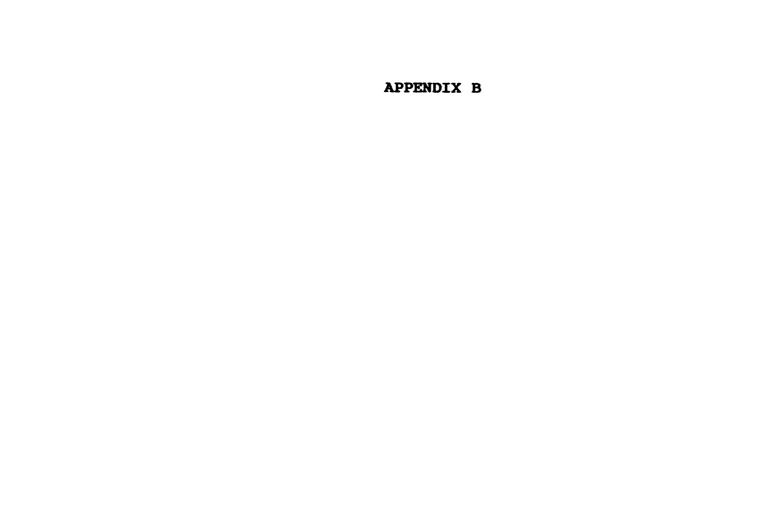
The propose schedule for Phase II activities is presented in Table 1. Actual scheduling is dependant upon the availability of subcontractors and unforeseen delays due to weather or site conditions. As of this time, access authorization to the property to the west of the plant has not been obtained; if authorization is not received within a reasonable time, the schedule may be extended.

TABLE 1
PHASE II INVESTIGATION SCHEDULE

ACTIVITY	ESTIMATED DURATION	PROPOSED COMPLETION DATE		
Soil Gas Surveys	2 days	May 24, 1989		
Soil Borings Monitor Well Installation(s)	1 week 2 days	May 26, 1989 May 31, 1989		
Subsurface Investigation Report		June 30, 1989		
Tank No. 4 Closure				
Field Work Closure Report	1 week 4 weeks	May 26, 1989 June 30, 1989		
In-Place Closure				
Application Field Work Closure Report	1 week 1 week 1 week	May 12, 1989 May 19, 1989 May 26, 1989		

APPENDIX A

APPENDIX A


SOIL GAS SURVEY DATA

Sampling Point	Depth, Feet	HNu Meter Reading, Vppm
1	2.0	0.0
2	3.5	35.0
3	3.5	10.6
4	3.5	0.0
5	3.5	0.5
6	3.5	3.0
7	3.5	4.8
8	3.5	5.0
9	3.5	2.0
10	3.5	2.5
11	3.5	4.6
12	3.5	0.8
13	3.5	0.0
14	3.5	0.0
15	3.5	0.3
16	3.5	1.0
17	3.5	1.0
18	3.5	1.0
19	3.5	0.0
20	3.5	0.6
21	3.5	1.1
22	3.5	1.0
23	3.5	4.9
24	3.5	11.2
25	3.5	15.0
26	3.5	95.0
27	3.5	1.3
28	3.5	0.4
29	4.0	6.2
30	3.5	8.5
31	3.5	20.0
32	3.5	0.0
33	3.5	0.0
34	3.5	0.0
35	3.5	0.0
36	3.5 3.5	0.0
37	3.5	4.0
38	3.5	0.0
39	3.5	3.8
40	3.5	0.0
41	3.5	0.0
42	3.5	0.1
43	3.5	0.0
44	3.5	1.4
45	3.5	0.2
46	3.5	0.0

APPENDIX A (continued)

SOIL GAS SURVEY DATA

Sampling Point	Depth, Feet	HNu Meter Reading, Vppm
47	3.5	0.0
48	3.5	1.4
49	3.5	0.1
50	3.5	0.0
51	3.5	0.0
52	3.5	0.1
53	3.5	0.0
54	3.5	0.8
55	3.5	0.0
56	3.5	0.4
57	3.5	0.4
58	3.5	0.0
59	3.5	0.0
60	3.5	0.0
61	3.5	0.0
62	3.5	0.0
63	3.5	0.0
64	3.5	0.0

3Page 1 Received: 03/31/89 RADIAN CORP.

REPORT

Work Order # M9-03-049

04/06/89 04:00:18

REPORT ERM North Central TO 102 Wilmont Road

Deerfield, Illinois 60018

PREPARED Radian Corporation BY Milwaukee Office

> 5103 West Beloit Road Milwaukee, WI 53214

ATTEN Charles S. Applegate

PHONE (414)643-2768

CLIENT ERM

SAMPLES 10

COMPANY ERM North Central FACILITY 102 Wilmont Road

ATTEN Mr. James Kane

Deerfield, Illinois 60018

State of Wisconsin - Certified Laboratory No. 241293910

RADIAN PROJECT NUMBER 207-027-23-01

WORK ID ERM JOB # 9059

TAKEN 03/29/89 BY MER, CJB, MLB

TRANS FEX EX AIRBILL # 2014690403

TYPE CARBON TUBES

P.O. #

INVOICE under separate cover

SAMPLE IDENTIFICATION

01 CARBON TUBE SG-2 LOC. 2 02 CARBON TUBE SG-23

03 CARBON TUBE SG-24

04 CARBON TUBE SG-25

05 CARBON TUBE SG-26

06 CARBON TUBE SG-31

07 CARBON TUBE SG-30

08 CARBON TUBE SG-3

09 CARBON TUBE SG-8

10 CARBON TUBE SG-37

TEST CODES and NAMES used on this report

8010 HALOGENATED VOLITILE ORGN. 8020B AROMATIC VOLITILE ORGANICS Page 2 RADIAN CORP. REPORT Work Order # M9-03-049

Received: 03/31/89 Results by Sample

SAMPLE ID CARBON TUBE SG-2 LOC. 2 FRACTION 01A TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN.

Date & Time Collected 03/29/89 Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALDCARBONS

ANALYST MM		FILE #		VERIFIE	D MM
INSTRMT TRACOR	INJECTD 04/05/89	FACTOR	500. 00	UNITS	ng/tube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR	
74-87-3	Chloromethane	ND	3300	500.00	
74-83-9	Bromomethane	ND	7500	500.00	
75-71-8	Dichlorodifluoromethane	ND	50000	500.00	
75-01-4	Vinyl Chloride	10000	1600	500.00	
75-00-3	Chloroethane	ND	1100	500.00	
75-09-2	Methylene Chloride	ND	320	500.00	
75-69-4	Trichlorofluoromethane	ND	550	500. 00	
75-35-4	1,1-Dichloroethene	ND	20	500.00	
75-34-3	1,1-Dichloroethane	6800	390	500.00	
156-60-5	trans-1,2-Dichloroethene	10500	25	500.00	
67-66-3	Chloroform	ND	120	500.00	
107-06-2	1,2-Dichloroethane	ND	170	500.00	
71 -55-6	1,1,1-Trichloroethane	1760	75	500.00	
56-23-5	Carbon Tetrachloride	ND	110	500.00	
75-27-4	Bromodichloromethane	ND	250	500.00	
78-87-5	1,2-Dichloropropane	ПN	150	500.00	
10061-02-6	trans-1,3-Dichloropropene	ND	6 00	500.00	
79-01-6	Trichloroethene	ND	25	500.00	
124-48-1	Dibromochloromethane	Ņ Ū	1400	500.00	
79-00-5	1,1,2-Trichloroethane	ND	500	500.00	
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00	
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00	
75-25-2	Bromoform	ND	23000	500.00	
79-34-5	1,1,2,2-Tetrachloroethane	ПN	500	500.00	
127-18-4	Tetrachloroethene	ND	250	500.00	

SURROGATES

74-97-5 Bromochloromethane NA % Recovery Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 3 RADIAN CORP. REPORT Work Order # M9-03-049

Received: 03/31/89 Results by Sample

SAMPLE ID CARBON TUBE SG-2 LOC. 2 FRACTION 01A TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS

Date & Time Collected 03/29/89 Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

								VERIFIED	MM
ANALYST INSTRMT	TRACOR		NJECTD	04/05/89	FILE # FACTOR	500.00	UNITS	ng/tube	
		CAS#			COMPOUND	RESULT	DE	T LIMIT	FACTOR
		71-43-2			Benzene	300		15	500.00
		108-88-3			Toluene	ND		190	500.00
		100-41-4		Eth	ylbenzene	ND		260	500.00
		108-90-7		Chlo	robenzene	ND		330	500.00
		106-46-7		1,4-Dichlo	robenzene	ND		1300	500.00
		541-73-1		1,3-Dichlo	robenzene	ND		500	500.00
		95-50-1		1,2-Dichlo	robenzene	ND		800	500.00
		108-38-3			m-Xylene	77 00		650	500.00
		Mixture		c	, p-Xylene	ND		550	500.00

SURROGATE

 $\mathcal{E}_{\mathcal{E}}$

Page 4 RADIAN CORP.
Received: 03/31/89 R

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-23

FRACTION 02A TEST CODE 8010
Date & Time Collected 03/29/89

NAME HALOGENATED VOLITILE ORGN.
Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

75-01-4 75-00-3 75-09-2 75-69-4 75-35-4 75-34-3 156-60-5 67-66-3 107-06-2	COMPOUND Chloromethane Bromomethane ichlorodifluoromethane Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethane 1,1-Dichloroethane cans-1,2-Dichloroethane Chloroform	RESULT ND ND ND ND 1800 3900 40300 41300 3440	DET LIMIT 660 1500 10000 320 220 63 110 4.0 77 5.0	FACTOR 100.00 100.00 100.00 100.00 100.00 100.00 100.00	
74-87-3 74-83-9 75-71-8 75-01-4 75-00-3 75-09-2 75-69-4 75-35-4 75-34-3 156-60-5 67-66-3 107-06-2	Chloromethane Bromomethane ichlorodifluoromethane Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethane 1,1-Dichloroethane	ND ND ND ND 1800 3900 40300 41300	660 1500 10000 320 220 63 110 4.0 77	100.00 100.00 100.00 100.00 100.00 100.00 100.00	
74-83-9 75-71-8 D 75-01-4 75-00-3 75-09-2 75-69-4 75-35-4 75-34-3 156-60-5 67-66-3 107-06-2	vichlorodifluoromethane Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethane 1,1-Dichloroethane eans-1,2-Dichloroethene	ND ND ND 1800 3900 40300 41300	1500 10000 320 220 63 110 4.0 77 5.0	100.00 100.00 100.00 100.00 100.00 100.00	
75-01-4 75-00-3 75-09-2 75-69-4 75-35-4 75-34-3 156-60-5 67-66-3	Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethane 1,1-Dichloroethane eans-1,2-Dichloroethane	ND ND 1800 3900 40300 41300	320 220 63 110 4.0 77 5.0	100.00 100.00 100.00 100.00 100.00	
75-00-3 75-09-2 75-69-4 75-35-4 75-34-3 156-60-5 67-66-3	Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethane 1,1-Dichloroethane ans-1,2-Dichloroethane	ND 1800 3900 40300 41300	220 63 110 4.0 77 5.0	100.00 100.00 100.00 100.00 100.00	
75-09-2 75-69-4 75-35-4 75-34-3 156-60-5 tr 67-66-3 107-06-2	Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethane 1,1-Dichloroethane ans-1,2-Dichloroethane	ND 1800 3900 40300 41300	63 110 4.0 77 5.0	100.00 100.00 100.00 100.00	
75-69-4 75-35-4 75-34-3 156-60-5 tr 67-66-3 107-06-2	Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane eans-1,2-Dichloroethene	1800 3900 40300 41300	110 4.0 77 5.0	100.00 100.00 100.00 100.00	
75-35-4 75-34-3 156-60-5 tr 67-66-3 107-06-2	1,1-Dichloroethene 1,1-Dichloroethane ans-1,2-Dichloroethene	3900 40300 41300	4.0 77 5.0	100.00 100.00 100.00	
75-35-4 75-34-3 156-60-5 tr 67-66-3 107-06-2	1,1-Dichloroethene 1,1-Dichloroethane ans-1,2-Dichloroethene	3900 40300 41300	77 5. 0	100.00 100.00	
156-60-5 tr 67-66-3 107-06-2	1,1-Dichloroethane ans-1,2-Dichloroethene	41300	5.0	100.00	
67 - 66-3 107-06-2	ans-1,2-Dichloroethene				
67-66-3 107-06-2	•	3440			
			23	100.00	
	1,2-Dichloroethane	ND	34	100.00	
71 -55-6	1,1,1-Trichloroethane	124300	15	100.00	
56-23-5	Carbon Tetrachloride	ND	21	100.00	
75-27-4	Bromodichloromethane	ND	49	100.00	
78-87-5	1,2-Dichloropropane	ND	29	100.00	
	ns-1,3-Dichloropropene	ND	120	100.00	
79-01-6	Trichloroethene	23500	5.0	100.00	
124-48-1	Dibromochloromethane	ND	280	100.00	
79-00-5	1,1,2-Trichloroethane	ND	100	100.00	
	is-1,3-Dichloropropene	ND	160	100.00	
	Chloroethylvinyl Ether	ND	280	100.00	
75-25-2	Bromoform	ND	4600	100.00	
	,2,2-Tetrachloroethane	ND	100	100.00	
127-18-4	Tetrachloroethene	7500	49	100.00	

SURROGATES

74-97-5 Bromochloromethane NA % Recovery
Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 5 Received: 03/31/89 RADIAN CORP.

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-23

TEST CODE BOSOB FRACTION 02A Date & Time Collected 03/29/89

NAME AROMATIC VOLITILE ORGANICS Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

ANALYST	мм		FILE #		VERIFIED	MM
INSTRMT TRACOR		JECTD 04/04/89	FACTOR	100.00	UNITS ng/tube	
	CAS#		COMPOUND	RESULT	DET LIMIT	FACTOR
	71-43-2		Benzene	ND	20	100.00
	108-88-3		Toluene	4 &	37	100.00
	100-41-4	Eth	ylbenzene	64	52	100.00
	108-90-7	Chlo	robenzene	ND	65	100.00
	106-46-7	1,4-Dichlo	robenzene	ND	250	100.00
	541-73-1	1,3-Dichlo	probenzene	210	100	100.00
	95-50-1	1,2-Dichlo	robenzene	ND	160	100.00
	108-38-3		m-Xylene	ND	130	100.00
	Mixture	C	, p-Xylene	110	110	100.00

SURROGATE

RADIAN CORP. REPORT Work Order # M9-03-049

Received: 03/31/89 Results by Sample

Page 6

SAMPLE ID CARBON TUBE SG-24 FRACTION 03A TEST CODE 8010 NAME HALDGENATED VOLITILE ORGN.

Date & Time Collected 03/29/89 Category

DRGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

NALYST MM		FILE #		VERIFIE	D MM
NSTRMT TRACOR	INJECTD 04/05/89	FACTOR	500.00	UNITS	ng/tube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR	
74-87-3	Chloromethane	ND	33 00	500.00	
74-83-9	Bromomethane	ND	750 0	500.00	
75-71-8	Dichlorodifluoromethane	ND	50000	500.00	
75-01-4	Vinyl Chloride	ND	1600	500.00	
75-00-3	Chloroethane	ND	1100	500.00	
75-09-2	Methylene Chloride	ND	320	500.00	
75-69-4	Trichlorofluoromethane	2200	5 50	500.00	
75-35-4	1,1-Dichloroethene	6980	20	500.00	
75-34-3	1,1-Dichloroethane	153000	390	500.00	
156-60-5	trans-1,2-Dichloroethene	210000	25	500.00	
67-66-3	Chloroform	ND	120	500.00	
107-06-2	1,2-Dichloroethane	ND	170	500.00	
71-55-6	1,1,1-Trichloroethane	430000	75	500.00	
56-23-5	Carbon Tetrachloride	ND	110	500.00	
75-27-4	Bromodichloromethane	ND	250	500.00	
78-87-5	1,2-Dichloropropane	ND	150	500.00	
10061-02-6	trans-1,3-Dichloropropene	ND	600	500.00	
79-01-6	Trichloroethene	74600	25	500.00	
124-48-1	Dibromochloromethane	ND	1400	500.00	
79-00-5	1,1,2-Trichloroethane	ND	500	500.00	
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00	
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00	
75-25-2	Bromoform	ND	23000	500.00	
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	500.00	
127-18-4	Tetrachloroethene	18800	250	500.00	
	SURROGATES	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·)

74-97-5 Bromochloromethane NA % Recovery Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 7 RADIAN CORP.
Received: 03/31/89 Re

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-24

FRACTION O3A TEST CODE 8020B

NAME AROMATIC VOLITILE ORGANICS

MM

Date & Time Collected 03/29/89 Category

UEDIETED

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

)e
FACTOR
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
1

SURROGATE

RADIAN CORP. REPORT

Work Order # M9-03-049

Received: 03/31/89 Results by Sample

Page 8

Mixture

SAMPLE ID CARBON TUBE SG-25 FRACTION 04A TEST CODE 8010 NAME HALDGENATED VOLITILE DRGN.

Date & Time Collected 03/29/89 Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

ANALYST MM INSTRMT TRACOR	'INJECTD 04/05/89	FILE #	200.00	VERIFIE UNITS	D MM ng/tube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR	
74-87-3	Chloromethane	ND	1300	200.00	
74-83-9	Bromomethane	ND	3000	200.00	
75-71-8	Dichlorodifluoromethane	ND	20000	200.00	
75-01-4	Vinyl Chloride	ND	640	200.00	
75-00-3	Chloroethane	ND	440	200.00	
75-09-2	Methylene Chloride	ND	130	200.00	
75-69-4	Trichlorofluoromethane	1780	220	200.00	
75-35-4	1,1-Dichloroethene	2760	8.0	200.00	
75-34-3	1,1-Dichloroethane	118800	150	200.00	
156-60-5	trans-1,2-Dichloroethene	146800	10	200.00	
67-66-3	Chloroform	ND	46	200.00	
107-06-2	1,2-Dichloroethane	ND	68	200.00	
71 -55-6	1,1,1-Trichloroethane	280000	30	200.00	
56- 23 -5	Carbon Tetrachloride	ND	42	200.00	
75-27-4	Bromodichloromethane	ND	98	200.00	
78-87-5	1,2-Dichloropropane	ND	58	200.00	
10061-02-6	trans-1,3-Dichloropropene	ND	240	200.00	
79-01-6	Trichloroethene	365 00	10	200.00	
124-48-1	Dibromochloromethane	ND	560	200.00	
79-00-5	1,1,2-Trichloroethane	ND	200	200.00	
10061-01-5	cis-1,3-Dichloropropene	ND	320	200.00	
100-75-8	2-Chloroethylvinyl Ether	ND	560	200.00	
75 - 25-2	Bromoform	ND	9200	200.00	
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	200.00	
127-18-4	Tetrachloroethene	3700	98	200.00	
74-97-5	SURROGATES Bromochloromethane	NA %	Recovery		

2-Bromo-1-chloropropane NA * Recovery

Page 9 RADIAN CORP.
Received: 03/31/89 R

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-25

FRACTION 04A TEST CODE 8020B Date & Time Collected 03/29/89 NAME AROMATIC VOLITILE ORGANICS

Category

MM

VERIFIED

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

AND VOT		lh.d			F-T1 F- A					
ANALYST INSTRMT	TRACOR	IM	INJECTD	04/05/89	FILE # FACTOR	200.00	UNITS	ng/tube		
		CAS	+		COMPOUND	RESULT	DET	LIMIT	FACTOR	₹
		71-43-	2		Benzene	ND		40	200.00	
		108-88-	3		Toluene	ND		74	200.00	
		100-41-	4	Eth	ylbenzene	ND		100	200.00	
		108-90-	7	Chlo	probenzene	ND		130	200.00	
		106-46-	7	1,4-Dichlo	robenzene	ND		5 00	200.00	
		541-73-	ı	1,3-Dichlo	robenzene	ND		200	200.00	
		95-50-	l	1,2-Dichlo	roberizene	ND		320	200.00	
		108-38-	3		m-Xylene	ND		260	200.00	
		Mixtur	2	c	, p-Xylene	ND		220	200.00	
	-			····					_	

SURROGATE

98-08-8 a, a, a-Trifluorobenzene NA% recovery

ROCKFORD REGION

NOV 0 1 1989

Environmental Protection Agency

RADIAN CORP. REPORT

Received: 03/31/89 Results by Sample

SAMPLE ID CARBON TUBE SG-26

Page 10

FRACTION 05A TEST CODE 8010
Date & Time Collected 03/29/89

NAME HALOGENATED VOLITILE ORGN.
Category

Work Order # M9-03-049

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

NALYST MM		FILE #		VERIFIE	D MM
NSTRMT TRACOR	INJECTD 04/05/89	FACTOR	500.00	UNITS	ng/tube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR	
74-87-3	Chloromethane	ND	330 0	500.00	
74-83-9	Bromomethane	ND	75 00	500.00	
75-71 <i>-</i> 8	Dichlorodifluoromethane	ND	50000	500.00	
75-01-4	Vinyl Chloride	ND	1600	500.00	
75-00-3	Chloroethane	ND	1100	500.00	
75-09-2	Methylene Chloride	DN	320	500.00	
75-69-4	Trichlorofluoromethane	ND	550	500.00	
75-35-4	1,1-Dichloroethene	ND	20	500.00	
75-34-3	1,1-Dichloroethane	39500	39 0	500.00	
156-60-5	trans-1,2-Dichloroethene	5100	25	500.00	
67-66-3	Chloroform	ND	120	500.00	
107-06-2	1,2-Dichloroethane	ND	170	500.00	
71-55-6	1,1,1-Trichloroethane	57400	75	500.00	
56-23-5	Carbon Tetrachloride	ND	110	500.00	
75-27-4	Bromodichloromethane	ND	250	500.00	
78-87-5	1,2-Dichloropropane	ND	150	500.00	
10061-02-6	trans-1,3-Dichloropropene	ND	600	500.00	
79-01-6	Trichloroethene	ND	25	500.00	
124-48-1	Dibromochloromethane	ND	1400	500.00	
79-00-5	1,1,2-Trichloroethane	ND	500	500.00	
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00	
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00	
75-25-2	Bromoform	ND	23000	500.00	
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	500.00	
127-18-4	Tetrachloroethene	ND	250	500.00	
	SURROGATES				
74-97-5	Promoch Levereth and	NO -	Pennyery		

74-97-5 Bromochloromethane NA % Recovery
Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 11 RADIAN CORP.
Received: 03/31/89 R

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-26

FRACTION 05A TEST CODE 8020B Date & Time Collected 03/29/89 NAME AROMATIC VOLITILE ORGANICS
Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

ONOLVET N		MM		c.		FILE #		VERIFIED	MM
ANALYST INSTRMT	TRACOR	:	NJECTD	04/05/89	FACTOR	500.00	UNITS	ng/tube	
		CAS	ŧ		COMPOUND	RESULT	DE	T LIMIT	FACTOR
		71-43-6	2		Benzene	ND		100	500.00
		108-88-	3		Toluene	11600		190	500.00
		100-41-4	+	Eth	ylbenzene	MD		260	500.00
	•	108-90-	7	Chlo	probenzene	ДИ		330	500.00
		106-46-	7	1,4-Dichlo	probenzene	ND		1300	500.00
		541-73-	L	1,3-Dichlo	probenzene	ND		500	500.00
		95-50-	L	1,2-Dichlo	robenzene	ND		800	500.00
		108-38-3	3		m-Xylene	ND		650	500.00
		Mixtur	2	c	, p-Xylene	ND		550	500.00
	_						-		

SURROGATE

Page 12 RADIAN CORP. REPORT Work Order # M9-03-049

Received: 03/31/89 Results by Sample

SAMPLE ID CARBON TUBE SG-31 FRACTION 06A TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN.

Date & Time Collected 03/30/89 Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

NALYST MM		FILE #		VERIFIE	D MM
NSTRMT TRACOR	INJECTD 04/05/89	FACTOR	200.00	UNITS	ng/tube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR	
74-87-3	Chloromethane	ND	1300	200.00	
74-83-9	Bromomethane	ND	3000	200.00	
75-71-8	Dichlorodifluoromethane	ND	50000	200.00	
75-01-4	Vinyl Chloride	ND	640	200.00	
75-00-3	Chloroethane	ND	440	200.00	
7 5 -09-2	Methylene Chloride	ND	130	200.00	
75-69-4	Trichlorofluoromethane	ND	220	200.00	
75-35-4	1,1-Dichloroethene	ND	8.0	200.00	
75-34-3	1,1-Dichloroethane	19400	150	200.00	
156-60-5	trans-1,2-Dichloroethene	71100	10	200.00	
67-66-3	Chloroform	ND	46	200.00	
107-06-2	1,2-Dichloroethane	ND	68	200.00	
71-55-6	1,1,1-Trichloroethane	6500	30	200.00	
56-23-5	Carbon Tetrachloride	ND	42	200.00	
75-27-4	Bromodichloromethane	ND	98	200.00	
78-87-5	1,2-Dichloropropane	ND	58	200.00	
10061-02-6	trans-1,3-Dichloropropene	ND	240	200.00	
79-01-6	Trichloroethene	ND	10	200.00	
124-48-1	Dibromochloromethane	ND	560	200.00	
79-00-5	1,1,2-Trichloroethane	ND	200	200.00	
10061-01-5	cis-1,3-Dichloropropene	ND	320	200.00	
100-75-8	2-Chloroethylvinyl Ether	ND	560	200.00	
75-25-2	Bromoform	ND	9200	200.00	
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	200.00	
127-18-4	Tetrachloroethene	ND	98	200.00	
127-18-4	retrach roroethene	שא	98	200.00	

SURROGATES

74-97-5 Bromochloromethane NA % Recovery
Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 13 RADIAN CORP. REPORT Received: 03/31/89 Results by Sample

SAMPLE ID CARBON TUBE SG-31

Work Order # M9-03-049

Category

FRACTION OGA TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS Date & Time Collected 03/30/89

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

0101107					VERIFIED	MM
ANALYST MM INSTRMT TRACOR		NJECTD 04/05/89	FILE # FACTOR	200.00	UNITS ng/tube	
	CAS#		COMPOUND	RESULT	DET LIMIT	FACTOR
	71-43-2		Benzene	ND	40	200.00
	108-88-3		Toluene	ND	74	200.00
	100-41-4	Eth	ylbenzene	ND	100	200.00
	108-90-7	Ch l c	probenzene	ND	130	200.00
	106-46-7	1,4-Dichlo	probenzene	ND	500	200.00
	541-73-1	1,3-Diehlo	probenzene	ND	200	200.00
	95-50-1	1,2-Dichlo	probenzene	ND	320	200.00
	108-38-3		m-Xylene	4760	260	200.00
	Mixture	•	o,p-Xylene	ND	220	200.00

SURROGATE

Page 14 RADIAN CORP. REPORT Work Order # M9-03-049

Received: 03/31/89 Results by Sample

SAMPLE ID CARBON TUBE SG-30 FRACTION 07A TEST CODE 8010 NAME HALDGENATED VOLITILE ORGN.

Date & Time Collected 03/30/89 Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

NALYST MM		FILE #		VERIFIED MM		
INSTRMT TRACOR	INJECTD 04/05/89	FACTOR	500.00	UNITS	ng/tube	
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR		
74-87-3	Chloromethane	ND	3300	500.00		
74-83-9	Bromomethane	ND	7500	500.00		
75-71-8	Dichlorodifluoromethane	ND	50000	500.00		
75-01-4	Vinyl Chloride	ND	1600	500.00		
75-00-3	Chloroethane	ND	1100	500.00		
75-09-2	Methylene Chloride	ND	320	500.00		
75-69-4	Trichlorofluoromethane	ND	550	500.00		
75-35-4	1,1-Dichloroethene	ND	20	500.00		
75-34-3	1,1-Dichloroethane	5200	390	500.00		
156-60-5	trans-1,2-Dichloroethene	28200	25	500.00		
67-66- 3	Chloroform	ND	120	500.00		
107-06-2	1,2-Dichloroethane	ND	170	500.00		
71 -55-6	1,1,1-Trichloroethane	7300	75	500.00		
56-23-5	Carbon Tetrachloride	ND	110	500.00		
75-27-4	Bromodichloromethane	ND	250	500.00		
78-87-5	1,2-Dichloropropane	ND	15 0	500.00		
10061-02-6	trans-1,3-Dichloropropene	ND	6 00	500.00		
79-01-6	Trichloroethene	2060	25	500.00		
124-48-1	Dibromochloromethane	ND	1400	500.00		
79-00-5	1,1,2-Trichloroethane	ND	500	500.00		
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00		
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00		
75-25-2	Bromoform	ND	23000	500.00		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5 00	500.00		
127-18-4	Tetrachloroethene	ND	250	500.00		
	SURROGATES					

SURROGATES

74-97-5 Bromochloromethane NA % Recovery
Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 15 RADIAN CORP. Received: 03/31/89

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-30

TEST CODE 8020B FRACTION 07A Date & Time Collected 03/30/89

NAME AROMATIC VOLITILE ORGANICS

Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

ANALYST	MM		FILE #		VERIFIED	MM
INSTRMT TRACO		NJECTD 04/05/89	FACTOR	500.00	UNITS ng/tube	
	CAS#		COMPOUND	RESULT	DET LIMIT	FACTOR
	71-43-2		Benzene	ND	100	500.00
	108-88-3		Toluene	ND	190	500.00
	100-41-4	Eth	ylbenzene	ND	260	500.00
	108-90-7	Ch1c	robenzene	ND	330	500.00
	106-46-7	1,4-Dichlo	probenzene	ND	1300	500.00
	541-73-1	1,3-Dichlo	probenzene	ND	500	50 0.00
	95-50-1	1,2-Dichlo	probenzene	ND	800	500.00
	108-38-3		m-Xylene	78 0	650	500.00
	Mixture	c	, p-Xylene	ND	550	500.00

SURROGATE

RADIAN CORP. REPORT

Received: 03/31/89 Results by Sample

Page 16

SAMPLE ID CARBON TUBE SG-3 FRACTION OBA TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN.

Date & Time Collected 03/30/89 Category

Work Order # M9-03-049

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

ANALYST MM		FILE #		VERIFIED MM
INSTRMT TRACOR	INJECTD 04/05/89	FACTOR	500.00	UNITS ng/tube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR
74-87-3	Chloromethane	ND	3300	500.00
74-83-9	Bromomethane	ND	7500	500.00
75-71-8	Dichlorodifluoromethane	ND	50000	500.00
75-01-4	Vinyl Chloride	ND	1600	500.00
75-00-3	Chloroethane	ND	1100	500.00
75-09-2	Methylene Chloride	ND	320	500,00
75-69-4	Trichlorofluoromethane	ND	550	500.00
75-35-4	1,1-Dichloroethene	ND	20	500.00
75-34-3	1,1-Dichloroethane	1240	390	500.00
156-60-5	trans-1,2-Dichloroethene	2100	25	500.00
67-66-3	Chloroform	ND	120	500.00
107-06-2	1,2-Dichloroethane	ND	170	500.00
71 <i>-</i> 55-6	1,1,1-Trichloroethane	7300	75	500.00
56-23-5	Carbon Tetrachloride	ND	110	500.00
75-27-4	Bromodichloromethane	ND	250	500.00
78-87-5	1,2-Dichloropropane	ND	150	500.00
10061-02-6	trans-1,3-Dichloropropene	ND	600	500.00
79-01 <i>-</i> 6	Trichloroethene	ND	25	500.00
124-48-1	Dibromochloromethane	ND	1400	500.00
79-00-5	1,1,2-Trichloroethane	ND	500	500.00
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00
75-25-2	Bromoform	ND	23000	500.00
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	500.00
127-18-4	Tetrachloroethene	ND	250	500.00

SURROGATES

74-97-5 Bromochloromethane NA % Recovery
Mixture 2-Bromo-1-chloropropane NA % Recovery

RADIAN CORP.

REPORT

Work Order # M9-03-049

VERTETER

Results by Sample

SAMPLE ID CARBON TUBE SG-3

Received: 03/31/89

Page 17

FRACTION OBA TEST CODE 8020B

Date & Time Collected 03/30/89

NAME AROMATIC VOLITILE ORGANICS
Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

ONOL VOT	MM					VE	EKILIED	MM
ANALYST INSTRMT TRACO	MM R II	NJECTD 04	4/05/89	FILE # FACTOR	500.00	UNITS 1	ng/tube	
	CAS#			COMPOUND	RESULT	DET	LIMIT	FACTOR
	71-43-2			Benzene	ND	1	100	50 0.00
	108-88-3			Toluene	ND	:	190	500.00
	100-41-4		Ethy	l benzene	ND	2	260	500.00
	108-90-7		Chlor	obenzene	ND	:	330	500.00
	106-46-7	1,4	4-Dichlor	obenzene	ND	13	300	500.00
	541-73-1	1,	3-Dichlor	obenzene	ND	5	500	500.00
	95-50-1	1,8	2-Dichlor	obenzene	ND	ε	300	500.00
	108-38-3		ı	m-Xylene	ND	ϵ	50	500.00
	Mixture		0,	p-Xylene	ND	5	50	500.00

SURROGATE

Page 18 Work Order # M9-03-049 RADIAN CORP. REPORT

Received: 03/31/89 Results by Sample

FRACTION 09A TEST CODE 8010 SAMPLE ID CARBON TUBE SG-8 NAME HALOGENATED VOLITILE ORGN. Date & Time Collected 03/30/89 Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

NALYST MM		FILE #		VERIFIED M
NSTRMT TRACOR	INJECTD 04/05/89	FACTOR	500.00	UNITS ng/tub
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR
74-87-3	Chloromethane	ND	3300	500.00
74-83 -9	Bromomethane	ND	7500	500.00
75-71-8	Dichlorodifluoromethane	ND	50000	500.00
75-01-4	Vinyl Chloride	ND	1600	500.00
75-00-3	Chloroethane	ND	1100	500.00
75-09-2	Methylene Chloride	ND	320	500.00
75-69-4	Trichlorofluoromethane	ND	550	500.00
75-35-4	1,1-Dichloroethene	1360	20	500.00
75-34-3	1,1-Dichloroethane	17200	390	500.00
156-60-5	trans-1,2-Dichloroethene	14500	25	500.00
67-66-3	Chloroform	ND	120	500.00
107-06-2	1,2-Dichloroethane	ND	170	500.00
71 –55–6	1,1,1-Trichloroethane	60500	75	500.00
56-23-5	Carbon Tetrachloride	ND	110	500.00
75-27-4	Bromodichloromethane	ND	250	500.00
78-87-5	1,2-Dichloropropane	ND	15 0	500.00
10061-02-6	trans-1,3-Dichloropropene	ND	600	500.00
79-01-6	Trichloroethene	18000	25	500.00
124-48-1	Dibromochloromethane	ND	1400	500.00
79-00-5	1,1,2-Trichloroethane	ND	500	500.00
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00
75-25-2	Bromoform	ND	23000	500.00
79-34-5	1, 1, 2, 2-Tetrachloroethane	ND	500	500.00
127-18-4	Tetrachloroethene	ND	250	500.00
	SURROGATES			

74-97-5 NA % Recovery Bromochloromethane 2-Bromo-1-chloropropane NA % Recovery Mixture

Page 19 Received: 03/31/89 RADIAN CORP.

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-8

FRACTION 09A TEST CODE 8020B Date & Time Collected 03/30/89

NAME AROMATIC VOLITILE ORGANICS

Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

ANALYST	мм		FILE #		VERIFIED	MM
INSTRMT TRACOF		NJECTD 04/05/89	FACTOR	500.00	UNITS ng/tube	
	CAS#		СОМРОИИО	RESULT	DET LIMIT	FACTOR
	71-43-2		Berizene	ND	100	500.00
	108-88-3		Toluene	ND	190	500.00
	100-41-4	Eth	ylbenzene	ND	260	500.00
	108-90-7	Chlo	probenzene	ND	330	500.00
	106-46-7	1,4-Dichlo	probenzene	ND	1300	500.00
	541-73-1	1,3-Dichlo	probenzene	ND	500	500.00
	95-50-1	1,2-Dichlo	probenzene	ND	800	500.00
	108-38-3		m-Xylene	ND	650	500.00
	Mixture	c	, p-Xylene	ND	550	500.00

SURROGATE

98-08-8 a, a, a-Trifluorobenzene NA% recovery

RADIAN CORP.

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-37

Received: 03/31/89

Page 20

FRACTION 10A TEST CODE 8010
Date & Time Collected 03/30/89

REPORT

NAME HALOGENATED VOLITILE ORGN.
Category

ORGANIC ANALYSIS DATA SHEET - PURGEABLE HALOCARBONS

ANALYST MM INSTRMT TRACOR	INJECTD 04/05/89	FILE # FACTOR	500.00	VERIFIE UNITS	D MM ng/tube
INSTRICT TRACOR	11132010 04700763	PACION	300.00	DIATIO	ngrube
CAS#	COMPOUND	RESULT	DET LIMIT	FACTOR	
74-87-3	Chloromethane	ND	3300	500.00	
74-83-9	Bromomethane	ND	7500	500.00	
75-71-8	Dichlorodifluoromethane	ND	50000	500.00	
75-01-4	Vinyl Chloride	ND	1600	500.00	
75-00-3	Chloroethane	ND	1100	500.00	
75-09-2	Methylene Chloride	ND	320	500.00	
75-69-4	Trichlorofluoromethane	ND	550	500.00	
75-35-4	1,1-Dichloroethene	ND	20	500.00	
75-34-3	1,1-Dichloroethane	960	390	500.00	
156-60-5	trans-1,2-Dichloroethene	ND	25	500.00	
67-66-3	Chloroform Chloroform	ND	120	500.00	
107-06-2	1,2-Dichloroethane	ND	170	500.00	
71-55-6	1,1,1-Trichloroethane	9740	75	500.00	
56-23-5	Carbon Tetrachloride	ND	110	500.00	
75-27-4	Bromodichloromethane	ND	250	500.00	
78-87-5	1,2-Dichloropropane	ND	150	500.00	
10061-02-6	trans-1,3-Dichloropropene	ND	600	500.00	
79-01-6	Trichloroethene	2600	25	500.00	
124-48-1	Dibromochloromethane	ND	1400	500.00	
79-00-5	1,1,2-Trichloroethane	ND	500	500.00	
10061-01-5	cis-1,3-Dichloropropene	ND	800	500.00	
100-75-8	2-Chloroethylvinyl Ether	ND	1400	500.00	
75-25-2	Bromoform	ND	23000	500.00	
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	500.00	
127-18-4	Tetrachloroethene	ND	250	500.00	

SURROGATES

74-97-5 Bromochloromethane NA % Recovery
Mixture 2-Bromo-1-chloropropane NA % Recovery

Page 21 RADIAN CORP.
Received: 03/31/89 Re

REPORT

Work Order # M9-03-049

Results by Sample

SAMPLE ID CARBON TUBE SG-37

FRACTION 10A TEST CODE 8020B Date & Time Collected 03/30/89 NAME AROMATIC VOLITILE ORGANICS

& Time Collected 03/30/89 Category

ORGANICS ANALYSIS DATA SHEET - PURGEABLE AROMATICS

ANALYST MM		FILE #		VERIFIED	MM
	INJECTD 04/05/89		500.00	UNITS ng/tube	
CAS	+	COMPOUND	RESULT	DET LIMIT	FACTOR
71-43-	2	Benzene	ND	100	500.00
108-88-	3	Toluene	ND	190	500.00
100-41-	4 Et	hylbenzene	ND	260	500.00
108-90-	7 Chl	orobenzene	ND	330	500.00
105-46-	7 1,4-Dichl	orobenzene	ND	1300	500.00
541-73-	1 1,3-Dichl	orobenzene	ND	500	500.00
95-50-	1,2-Dichl	orobenzene	ND	800	500.00
108-38-	3	m-Xylene	ND	650	500.00
Mixtur	•	o,p-Xylene	ND	550	500.00

SURROGATE

98-08-8 a, a, a-Trifluorobenzene

NA% recovery

•

RADIAN CORP.

REPORT

Work Order # M9-03-049

Received: 03/31/89

Page 22

Test Methodology

TEST CODE 8010 NAME HALOGENATED VOLITILE ORGN.

Method not available.

TEST CODE 8020B NAME AROMATIC VOLITILE ORGANICS

Method not available.

RECEIVED
ROCKFORD REGION
NOV 0 1 1989
Environmental Protection Agency
State of Illinois

NET Midwest Bartlett Divis 850 West Bart Bartlett, IL 60 Tel: (312) 289

Fax: (312) 28

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82424

Sample Description:

B-3-D; B-3

Suntec

Date Taken: 05-24-89 1150

Date Received: 05-2

VOLATILE COMPOUNDS

Acrolein <10. ug/c Acrylonitrile <10. ug/c Benzene <1.0 ug/c Bromodichloromethane <1.0 ug/c Bromoform <1.0 ug/c Carbon tetrachloride <1.0 ug/c Chlorobenzene <1.0 ug/c Chloroethane <10. ug/c	~
Benzene <1.0 ug/c Bromodichloromethane <1.0 ug/c Bromoform <1.0 ug/c Bromomethane <10. ug/c Carbon tetrachloride <1.0 ug/c Chlorobenzene <1.0 ug/c Chloroethane <10. ug/c	_
Bromodichloromethane <1.0 ug/c Bromoform <1.0 ug/c Bromomethane <10. ug/c Carbon tetrachloride <1.0 ug/c Chlorobenzene <1.0 ug/c Chloroethane <10. ug/c	
Bromoform <1.0 ug/c Bromomethane <10. ug/c Carbon tetrachloride <1.0 ug/c Chlorobenzene <1.0 ug/c Chloroethane <10. ug/c	
Bromomethane <10. ug/c Carbon tetrachloride <1.0 ug/c Chlorobenzene <1.0 ug/c Chloroethane <10.	
Carbon tetrachloride <1.0 ug/c Chlorobenzene <1.0 ug/c Chloroethane <10.	_
Chlorobenzene <1.0 ug/c Chloroethane <10. ug/c	
Chloroethane <10. ug/c	g
	g
	g
2-Chloroethylvinyl ether <1.0 ug/c	ġ
Chloroform <1.0 ug/c	_
Chloromethane <10. ug/c	g
Dibromochloromethane <1.0 ug/c	g
1,2-Dichlorobenzene <1.0 ug/o	g
1,3-Dichlorobenzene <1.0 ug/o	g
1,4-Dichlorobenzene <1.0 ug/o	g
1,1-Dichloroethane <1.0 ug/o	g
1,2-Dichloroethane <1.0 ug/o	
1,1-Dichloroethene <1.0 ug/	
cis-1,2-Dichloroethene <1.0 ug/	
trans-1,2-Dichloroethene <1.0 ug/o	
1,2-Dichloropropane <1.0 ug/	_
cis-1,3-Dichloropropene <1.0 ug/o	
trans-1,3-Dichloropropene <1.0 ug/	_
Ethyl benzene <1.0 ug/o	_
Ediyi benzene 1.0 ug/	9

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82425

Sample Description:

B-4-E; B-4

Suntec

Date Taken: 05-24-89 1615

Date Received: 05-25-89 1445

Solids, Total

79.23

ફ

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82425

Sample Description:

B-4-E; B-4

Suntec

Date Taken: 05-24-89 1615

Date Received: 05-25-89 1445

VOLATILE COMPOUNDS

Acrolein	<10.	ug/g
Acrylonitrile	<10.	ug/g
Benzene	<1.0	ug/g
Bromodichloromethane	<1.0	ug/g
Bromoform	<1.0	ug/g
Bromomethane	<10.	ug/g
Carbon tetrachloride	<1.0	ug/g
Chlorobenzene	<1.0	ug/g
Chloroethane	<10.	ug/g
2-Chloroethylvinyl ether	<1.0	ug/g
Chloroform	<1.0	ug/g
Chloromethane	<10.	ug/g
Dibromochloromethane	<1.0	ug/g
1,2-Dichlorobenzene	<1.0	ug/g
1,3-Dichlorobenzene	<1.0	ug/g
1,4-Dichlorobenzene	<1.0	ug/g
1,1-Dichloroethane	<1.0	ug/g
1,2-Dichloroethane	<1.0	ug/g
1,1-Dichloroethene	<1.0	ug/g
cis-1,2-Dichloroethene	<1.0	ug/g
trans-1,2-Dichloroethene	<1.0	ug/g
1,2-Dichloropropane	<1.0	ug/g
cis-1,3-Dichloropropene	<1.0	ug/g
trans-1,3-Dichloropropene	<1.0	ug/g
Ethyl benzene	<1.0	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche

ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300

Deerfield IL 60015

06-13-89

Sample No.: 82425

Sample Description:

B-4-E; B-4

Suntec

Date Taken: 05-24-89 1615

Date Received: 05-25-89 1445

Methylene chloride	<5.0	ug/g
1,1,2,2-Tetrachloroethane	<1.0	ug/g
Tetrachloroethene	<1.0	ug/g
Toluene	<1.0	ug/g
1,1,1-Trichloroethane	<1.0	ug/g
1,1,2-Trichloroethane	<1.0	ug/g
Trichloroethene	<1.0	ug/g
Trichlorofluoromethane	<1.0	ug/g
Vinyl chloride	<10.	ug/g
Xylenes, Total	<1.0	ug/g
Isopropanol	<10.	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82426

Sample Description:

B-2-E; B-2

Suntec

Date Taken: 05-25-89 0840

Date Received: 05-25-89 1445

Solids, Total

89.11

ક્ષ

Results on a dry weight basis.

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC.

102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82426

Sample Description:

B-2-E; B-2

Suntec

Date Taken: 05-25-89 0840

Date Received: 05-25-89 1445

VOLATILE COMPOUNDS

Acrolein	<10.	ug/g
Acrylonitrile	<10.	ug/g
Benzene	<1.0	ug/g
Bromodichloromethane	<1.0	ug/g
Bromoform	<1.0	ug/g
Bromomethane	<10.	ug/g
Carbon tetrachloride	<1.0	ug/g
Chlorobenzene	<1.0	ug/g
Chloroethane	<10.	ug/g
2-Chloroethylvinyl ether	<1.0	ug/g
Chloroform	<1.0	ug/g
Chloromethane	<10.	ug/g
Dibromochloromethane	<1.0	ug/g
1,2-Dichlorobenzene	<1.0	ug/g
1,3-Dichlorobenzene	<1.0	ug/g
1,4-Dichlorobenzene	<1.0	ug/g
1,1-Dichloroethane	<1.0	ug/g
1,2-Dichloroethane	<1.0	ug/g
1,1-Dichloroethene	<1.0	ug/g
cis-1,2-Dichloroethene	<1.0	ug/g
trans-1,2-Dichloroethene	<1.0	ug/g
1,2-Dichloropropane	<1.0	ug/g
cis-1,3-Dichloropropene	<1.0	ug/g
trans-1,3-Dichloropropene	<1.0	ug/g
Ethyl benzene	<1.0	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ug/g

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82426

Sample Description:

Trichloroethene

Vinyl chloride

Xylenes, Total

Isopropanol

Toluene

B-2-E; B-2

Suntec

Date Taken: 05-25-89 0840 Date Received: 05-25-89 1445

Methylene chloride <5.0 ug/g 1,1,2,2-Tetrachloroethane <1.0 ug/g Tetrachloroethene <1.0 ug/g <1.0 ug/g 1,1,1-Trichloroethane <1.0 ug/g 1,1,2-Trichloroethane <1.0 ug/g <1.0 ug/g Trichlorofluoromethane <1.0 ug/g <10. ug/g <1.0 ug/g

<10.

Results on a dry weight basis.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82427

Sample Description:

B-6-D; B-6

Suntec

Date Taken: 05-25-89 1025

Date Received: 05-25-89 1445

Solids, Total

88.01

웋

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82427

Sample Description:

B-6-D; B-6

Suntec

Date Taken: 05-25-89 1025

Date Received: 05-25-89 1445

VOLATILE COMPOUNDS

Acrolein	<10.	ug/g
Acrylonitrile	<10.	ug/g
Benzene	<1.0	ug/g
Bromodichloromethane	<1.0	ug/g
Bromoform	<1.0	ug/g
Bromomethane	<10.	ug/g
Carbon tetrachloride	<1.0	ug/g
Chlorobenzene	<1.0	ug/g
Chloroethane	<10.	ug/g
2-Chloroethylvinyl ether	<1.0	ug/g
Chloroform	<1.0	ug/g
Chloromethane	<10.	ug/g
Dibromochloromethane	<1.0	ug/g
1,2-Dichlorobenzene	<1.0	ug/g
1,3-Dichlorobenzene	<1.0	ug/g
1,4-Dichlorobenzene	<1.0	ug/g
1,1-Dichloroethane	<1.0	ug/g
1,2-Dichloroethane	<1.0	ug/g
1,1-Dichloroethene	<1.0	ug/g
cis-1,2-Dichloroethene	<1.0	ug/g
trans-1,2-Dichloroethene	<1.0	ug/g
1,2-Dichloropropane	<1.0	ug/g
cis-1,3-Dichloropropene	<1.0	ug/g
trans-1,3-Dichloropropene	<1.0	ug/g
Ethyl benzene	<1.0	ug/g

Results on a dry weight basis.

Neal E. Cleghorn Project Manager RECEIVED ROCKFORD REGION

NOV 0 1 1989

Environmental Protection Agency,
State of Illinois

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82427

Sample Description:

B-6-D; B-6

Suntec

Date Taken: 05-25-89 1025 Date Received: 05-25-89 1445

<5.0	ug/g
<1.0	ug/g
<10.	ug/g
<1.0	ug/g
<10.	ug/g
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

Results on a dry weight basis.

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103 Tel: (312) 289-3100

Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82428

Sample Description:

B-5-E

Suntec

Date Taken: 05-24-89 1730

Date Received: 05-25-89 1445

Solids, Total

91.17

용

Results on a dry weight basis.

Project Manager

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche
ERM-NORTH CENTRAL, INC.
102 Wilmot Road, Suite 300

06-13-89

Sample No.: 82428

Deerfield IL 60015

Sample Description:

B-5-E

Suntec

Date Taken: 05-24-89 1730

Date Received: 05-25-89 1445

VOLATILE COMPOUNDS

Acrolein	<10.	ug/g
Acrylonitrile	<10.	ug/g
Benzene	<1.0	ug/g
Bromodichloromethane	<1.0	ug/g
Bromoform	<1.0	ug/g
Bromomethane	<10.	ug/g
Carbon tetrachloride	<1.0	ug/g
Chlorobenzene	<1.0	ug/g
Chloroethane	<10.	ug/g
2-Chloroethylvinyl ether	<1.0	ug/g
Chloroform	<1.0	ug/g
Chloromethane	<10.	ug/g
Dibromochloromethane	<1.0	ug/g
1,2-Dichlorobenzene	<1.0	ug/g
1,3-Dichlorobenzene	<1.0	ug/g
1,4-Dichlorobenzene	<1.0	ug/g
1,1-Dichloroethane	<1.0	ug/g
1,2-Dichloroethane	<1.0	ug/g
1,1-Dichloroethene	<1.0	ug/g
cis-1,2-Dichloroethene	<1.0	ug/g
trans-1,2-Dichloroethene	<1.0	ug/g
1,2-Dichloropropane	<1.0	ug/g
cis-1,3-Dichloropropene	<1.0	ug/g
trans-1,3-Dichloropropene	<1.0	ug/g
Ethyl benzene	<1.0	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82428

Sample Description:

B-5-E Suntec

Date Taken: 05-24-89 1730

Date Received: 05-25-89 1445

Methylene chloride	<5.0	ug/g
1,1,2,2-Tetrachloroethane	<1.0	ug/g
Tetrachloroethene	<1.0	ug/g
Toluene	<1.0	ug/g
1,1,1-Trichloroethane	<1.0	ug/g
1,1,2-Trichloroethane	<1.0	ug/g
Trichloroethene	<1.0	ug/g
Trichlorofluoromethane	<1.0	ug/g
Vinyl chloride	<10.	ug/g
Xylenes, Total	<1.0	ug/g
Isopropanol	<10.	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche

ERM-NORTH CENTRAL, INC.

102 Wilmot Road, Suite 300

Deerfield IL 60015

06-13-89

Sample No.: 82429

Sample Description:

MW-B3; B-3

VOLATILE COMPOUNDS

Suntec

Date Taken: 05-25-89 1100

Date Received: 05-25-89 1445

AOTWITTE	COMPOUNDS
Acrolein	<10.
Acrylonitrile	<10.
Benzene	<1.0
Bromodichloromethane	<1.0
Bromoform	<1.0
Bromomethane	<10.
Carbon tetrachloride	<1.0
Chlorobenzene	<1.0
Chloroethane	<10.
2-Chloroethylvinyl ether	<1.0
Chloroform	2.8
Chloromethane	<10.
Dibromochloromethane	<1.0
1,2-Dichlorobenzene	<1.0
1,3-Dichlorobenzene	<1.0
1,4-Dichlorobenzene	<1.0
1,1-Dichloroethane	143.
1,2-Dichloroethane	<1.0
1,1-Dichloroethene	1.6
cis-1,2-Dichloroethene	318.
trans-1,2-Dichloroethene	2.6
1,2-Dichloropropane	<1.0
cis-1,3-Dichloropropene	<1.0
trans-1,3-Dichloropropene	<1.0
Ethyl benzene	<1.0
Methylene chloride	<5.0
1,1,2,2-Tetrachloroethane	<1.0
Tetrachloroethene	62.
Toluene	<1.0
1,1,1-Trichloroethane	<1.0

ug/L ug/L

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche

ERM-NORTH CENTRAL, INC.

102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82429

Sample Description:

MW-B3; B-3

Suntec

Date Taken: 05-25-89 1100

Date Received: 05-25-89 1445

VOLATILE COMPOUNDS

1,1,2-Trichloroethane	<1.0	ug/L
Trichloroethene	118.	ug/L
Trichlorofluoromethane	<1.0	ug/L
Vinyl chloride	<10.	ug/L
Xylenes, Total	<1.0	ug/L
<u>-</u>		

Isopropanol <10. mg/L

Project Manager

Radian Work Order 89-07-265

Analytical Report 09/06/89

ERM - North Central

ERM North Central 102 Wilmont Road Deerfield, IL 60015

Customer Work Identification Suntec Industries
Purchase Order Number 9155

Contents:

- 1 Analytical Data Summary
- 2 Sample History
- 3 Comments Summary
- 4 Notes and Definitions

Radian Corporation 8501 MoPac Boulevard Austin, Texas 78720-1088

512/454-4797

Client Services Coordinator: CSAPPLEGATE

certified by: Muchae (C-Sleephen)

L.

Method:SW8240-Illinois list (1)					
List:						
Sample ID:	SB1A	SB1B	SB1C	SB2A	S B2B	SB2C
Factor:	1.000	1,000	1.000	1.000	1.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	0 3A	04 A	05A	06A	07A	A80
Matrix:	solid	solid	solid	solid	solid	solic
Benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethyl benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
n-Hexane	<10	<10	<10	<10	<10	<10
Toluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Xylenes	<15	<15	<15	<15	<15	<15
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	97	96	98	98	95	93
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	101	101	99	98	100	100
Control Limits: 91 to 110						
Toluene-d8	99	98	100	98	97	97
Control Limits: 91 to 103						

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ERM - North Central

Method:SW8240-Illinois list (1	· ·					
List:						
Sample 1D:	S83A	SB 3B	SB3C	SB4A	SB4B	SB4C
Factor:	1.000	1.000	1.000	1.000	1.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	09A	10A	11A	12A	13A	14A
Matrix:	solid	solid	solid	solid	solid	solid
Benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethyl benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
n-Hexane	<10	<10	<10	<10	<10	<10
Toluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Xytenes	<15	<15	<15	<15	<15	<15
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	92	98	96	97	99 Q	96
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	100	101	101	100	101	101
Control Limits: 91 to 110						
Toluene-d8	99	99	98	96	98	100
Control Limits: 91 to 103						

Q Outside control limits

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Illinois list	(1)	
List:		
Sample ID:	SYSTEM BLANK	
Factor:	1.000	
Results in:	ug/Kg	
	16 A	
Matrix:	solid	
Benzene	<5.0	
1,2-Dichloroethane	<5.0	
Ethyl benzene	<5.0	
n-Hexane	<10	
Toluene	<5.0	
Xylenes	<15	
Surrogate Recovery(%)		
1,4-Bromofluorobenzene	99 Q	
Control Limits: 62 to 98		
1,2-Dichloroethane-d4	100	
Control Limits: 91 to 110		
Toluene-d8	100	
Control Limits: 91 to 103		

Q Outside control limits

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Illinois list (1	1)			
List:				
Sample ID:	ISI	DECON I	SYSTEM BLANK	
Factor:	5.000	1.000	1.00	
Results in:	ug/L	ug/L	ug/L	
	01A	02A	15A	
Matrix:	water	water	Water	
8enzene	<25	<5.0	<5.0	
1,2-Dichtoroethane	<25	<5.0	<5.0	
Ethyl benzene	<25	<5.0	<5.0	
n-Hexane	<50	<10	<10	
Totuene	<25	<5.0	<5.0	
Xylenes	1500	<15	<15	
Surrogate Recovery(%)				
1,4-Bromofluorobenzene	157	97	. 99	
Control Limits: 55 to 167				
1,2-Dichloroethane-d4	100	101	100	
Control Limits: 39 to 156				
Toluene-d8	103	101	100	
Control Limits: 58 to 146				

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	• (1)	
List:8240 MATRIX SPIKE Sample ID:	S848 MS	SB4B MSD
ample in.	4970 N3	JOHO MOU
Factor:	2.000	2.000
Results in:	X	x
	13C	130
Matrix:	solid	solid
Benzene	81	79
Chlorobenzene	105	102
1,1-Dichloroethene	62	60
Toluene	100	95
Trichloroethene	92	84
Surrogate Recovery(%)		
1,4-Bromofluorobenzene	96	98
Control Limits: 62 to 98		
1,2-Dichloroethane-d4	99	102
Control Limits: 91 to 110		
Toluene-d8	101	98
Control Limits: 91 to 103		

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	s (1)					
List:8240 Table 1						
Sample ID:	SB1A	SB18	SB1C	SB2A	SB2B	S82C
Factor:	1.000	1.000	1.000	1.000	1.000	1.000
Results in:	ug/Kg	ug/ Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	038	048	05 B	068	07 8	088
Matrix:	solid	solid	solid	solid	solid	solic
Acetone	<100	<100	<100	<100	<100	<100
Acrolein	<75	<75	<75	<75	<75	<75
Acrylonitrile	<25	<25	<25	<25	<25	<25
Benzene	<5.0	<5.0	^ <5.0	<5.0	<5.0	<5.0
Bromodichioromethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromomethane	<10	<10	<10	<10	<10	<10
Carbon disulfide	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon tetrachloride	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroethane	<10	<10	<10	<10	<10	<10
2-Chloroethyl vinyl ether	<10	<10	<10	<10	<10	<10
Chloroform	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloromethane	<10	<10	<10	<10	<10	<10
Dibromochloromethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibromomethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,4-Dichloro-2-butene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dichlorodifluoromethane	<5.0	35	<5.0	<5.0	<5.0	10*
1,1-Dichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,2-Dichloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethyl benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethyl methacrylate	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Hexanone	<50	<50	<50	<50	<50	<50
Iodomethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl ethyl ketone	<100	<100	<100	<100	<100	<100
4-Methyl-2-pentanone(MIBK)	<50	<50	<50	<50	<50	<50

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

	Sample 1	dentifications :	and Dates			
Sample 1D	T\$1	DECON 1	SB1A	SB1B	SB1C	SB2A
Date Sampled	07/24/89	07/25/89	07/24/89	07/24/89	07/24/89	07/24/89
Date Received	07/27/89	07/27/89	07/27/89	07/27/89	07/27/89	07/27/89
Matrix	water	water	solid	solid	solid	solid
	01	02	03	04	05	06
SW8240-Illinois list			·····			
Prepared			08/04/89	08/04/89	08/04/89	08/04/89
Analyzed			08/04/89	08/04/89	08/04/89	08/04/89
Analyst			MCL	MCL	MCL	MCL
File ID			74501	74502	74503	74504
Report as	•		received	received	received	received
SW8240-Illinois list						
Prepared	08/03/89	08/03/89				
Analyzed	08/03/89	08/03/89				
Analyst	MCL	HCL				
file ID	74485	74486				
Report as		received				
SW8240-Volatile Organic	:\$					
Prepared	•		08/04/89	08/04/89	08/04/89	08/04/89
Analyzed			08/04/89	08/04/89	08/04/89	08/04/89
Analyst			MCL	MCL	HCL	MCL
File ID			74501	74502	74503	74504
Report as			received	received	received	received
SW8240-Volatile Organic	:8					
Prepared	08/03/89	08/03/89				
Analyzed	08/03/89	08/03/89				
Analyst	MCL	MCL				
File ID	74485	74486				
Report as	received	received				
SW8270-Illinois list						
Prepared			07/31/89	07/31/89	07/31/89	07/31/89
Analyzed			08/04/89	08/04/89	08/04/89	08/03/89
Analyst			HCK	MCK	MCK	MCK
File ID			82164	82157	82158	82151
Report as	•		received	received	received	received
SW8270-Illinois list						
Prepared		08/09/89				
Analyzed		08/23/89				
Analyst		MCK				
File ID		82282				
Report as	1	received				

Method:SW8270-Illinais list (1)		
List:			
Sample ID:	DECON I		
Factor:	1.000		
Results in:	ug/L		
	02C		
Matrix:	water		
Acenaphthene	<1200		
Acenaphthylene	<660		
Anthracene	<660		
Benzo(a)anthracene	<8.7		
Benzo(a)pyrene	<15		
Benzo(b)fluoranthene	<12		
Benzo(g,h,i)perylene	<51		
Benzo(k)fluoranthene	<11		
Chrysene	<100		
Dibenz(a,h)anthracene	<20		
Fluoranthene	<140		
Fluorene	<140		
Indeno(1,2,3-cd)pyrene	<29		
Naph tha Lene	<660		
Phenanthrene	<660		
Pyrene	<180		
Surrogate Recovery(%)			
2-Fluorobiphenyl	71		
Control Limits: 33 to 153	•		
2-Fluorophenol	48		
Control Limits: 20 to 158			
Nitrobenzene-d5	50		
Control Limits: 21 to 159			
Phenol-d5	51		
Control Limits: 27 to 154			
Ferphenyl-d14	102		
Control Limits: 0 to 223			
2,4,6-Tribromphenol	93		
Control Limits: 0 to 179			

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

. .

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

	Sample Id	dentifications a	and Dates			
Sample ID	S82 8	SB2C	SB3A	S 838	S 83C	SB4A
Date Sampled	07/24/89	07/24/89	07/24/89	07/24/89	07/24/89	07/24/89
Date Received	0 7/27/89	07/27/89	07/27/89	0 7/27/89	07/27/89	0 7/27/89
Matrix	solid	solid	solid	solid	solid	solid
	07	08	09	10	11	12
SW8240-Illinois list						
Prepared	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89
Analyzed	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89
Analyst	MCL	MCL	MCL	MCL	MCL	MCL
File ID	74505	74506	74507	74508	7450 9	74510
Report as	received	received	received	received	received	received
W8240-Volatile Organics						
Prepared	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89
Analyzed	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89
Analyst	MCL	MCL	MCL	MCL	MCL	MCL
File ID	74505	74506	74507	74508	74509	74510
Report as	received	received	received	received	received	received
W8270-Illinois list						
Prepared	07/31/89	07/31/89	08/01/89	07/31/89	07/31/89	07/31/89
Analyzed	08/03/89	08/04/89	08/04/89	08/04/89	08/04/89	08/04/89
Analyst	MCK	MCK	HCK	MCK	MCK	MCK
File ID	82152	82159	82163	82160		82167
Report as	received	received	received	received	received	received

	Sample id	dentifications (and Dates		
Sample ID	S84 B	SB4C	SYSTEM BLANK	SYSTEM BLANK	REAGENT BLANK
Date Sampled	07/24/89	07/24/89			
Date Received	07/27/89	07/27/89	07/27/89	07/27/89	07/27/89
Matrix	solid	solid	water	solid	solid
	13	14	15	16	18
240-Illinois list					
Prepared	08/04/89	08/04/89		08/04/89	
Analyzed	08/04/89	08/04/89		08/04/89	
Analyst	MCL	MCL		MCL	
File ID	74511	74514		74500	
Report as	received	received		received	
240-Illinois list					
Prepared			08/04/89		
Analyzed			08/04/89		
Analyst			MCL		
File ID			74500		
Report as			received		
240-Volatile Organics	•				
Prepared	08/05/89				
Analyzed	08/05/89				
Analyst	MCL				
File ID	74519				
Report as	received				
240-Volatile Organics					
Prepared	08/04/89	08/04/89		08/04/89	
Analyzed	08/04/89	08/04/89		08/04/89	
Analyst	MCL	MCL		MCL	
File ID	74511	74514		74500	
Report as	received	received		received	
240-Volatile Organics					
Prepared			08/04/89		
Analyzed			08/04/89		
Analyst			MCL		
File ID			74500		
Report as			received		
270-Illinois list					
Prepared	07/31/89	07/31/89			07/31/89
Analyzed	08/04/89	08/04/89			08/04/89
Analyst	MCK	MCK			MCK
File ID	82166	82162			82150
Report as	received	received			received

Appendix A

Comments, Notes and Definitions

- A This flag indicates that a spike is an analytical and/or postdigestion spike. These spikes have not been subjected to the extraction or digestion step.
- B This flag indicates that the analyte was detected in the reagent blank but the sample results are not corrected for the amount in the blank.
- C Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The C flag indicates that the analyte has been confirmed by analysis on a second column.
- D This flag identifies all analytes identified in analysis at a secondary dilution factor. In an analysis some compounds can exceed the calibration range of the instrument. Therefore two analyses are performed, one at the concentration of the majority of the analytes, and a second with the sample diluted so that high concentration analyte(s) fall within the calibration range.
- E The reported value is estimated because of the presence of interference. The potential source of the interference is included in the report narrative.
- G This flag identifies a GC/MS result whose concentration exceeds the calibration range for that specific analysis. Usually if one or more compounds have a response greater than full scale, the sample or extract is diluted and re-enalyzed.
- J Indicates an estimated value for GC/MS data. This flag is used either when estimating a concentration for tentatively identified compounds where a response factor of 1 is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit.
- NA This analyte was not analyzed.
- NC Applies to RPD and spike recovery results. The relative percent differ ence (RPD) and spike recovery are not calculated when a result value is less than five times the detection limit or obvious matrix interferences are present. See * definition for further explanation of the unreliability of data near the detection limit. A spike recovery is not calculated when the sample result is greater than four times the spike added concentration because the spike added concentration is considered insignificant.
- ND This flag (or <) is used to denote analytes which are not detected at or above the specified detection limit. The value to the right of the < symbol is the method specified detection limit for the sample.
- NR This analyte was not requested by the client.
- NS This analyte or surrogate was not added (spiked) to the sample for this analysis.

- NVA A result or value is not available for this parameter, usually a detection limit.
- P Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The P flag indicates that the analyte has been confirmed previously. This flag is applicable to analyses of samples arising from a regular sampling program as a specific sample source; for example, a quarterly well monitoring program.
- Q This quality control standard is outside method or laboratory specified control limits. This flag is applied to matrix spike, analytical QC spike, and surrogate recoveries; and to RPD(relative percent difference) values for duplicate analyses and matrix spike/matrix spike duplicate result.
- R This flag indicates that the analyte was detected in the reagent blank and the sample results are corrected for the amount in the blank.
- S This flag indicates that a specific result from a metals analysis has been obtained using the Method of Standard Addition.
- U Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The U flag indicates that second column was not requested.
- X Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The X flag indicates a second column confirmation was performed but the analyte was not confirmed and is likely a false positive.
- * The asterisk(*) is used to flag results which are less than five times the method specified detection limit. Studies have shown that the uncertainty of the analysis will increase exponentially as the method detection limit is approached. These results should be considered approximate.

TERMS USED IN THIS REPORT:

Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications.

Compound - See Analyte.

Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories' method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below)

EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified.

Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), use of cleanup procedures, or dilution of extracts/digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100.

Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste.

Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary.

Units -	ug/L	micrograms per liter (parts per billion);liquids/water
	ug/Kg	micrograms per kilogram (parts per billion); soils/solids
	ug/M3	micrograms per cubic meter; air samples
	mg/L	milligrams per liter (parts per million);liquids/water
	mg/Kg	milligrams per kilogram (parts per million);soils/solids
	×	percent; usually used for percent recovery of QC standards
	u\$/cm	conductance unit; microSiemens/centimeter
	mL/hr	milliliters per hour; rate of settlement of matter in water
	NTU	turbidity unit; nephelometric turbidity unit
	ധ	color unit; equal to 1 mg/L of chloroplatinate sait

Radian Work Order 89-07-266

Analytical Report 09/06/89

ERM - North Central

ERM North Central 102 Wilmont Road Deerfield, IL 60015

Customer Work Identification Suntec Industries
Purchase Order Number 9155

Contents:

- Analytical Data Summary
- 2 Sample History
- 3 Comments Summary
- 4 Notes and Definitions

Radian Corporation 8501 MoPac Boulevard Austin, Texas 78720-1088

512/454-4797

Client Services Coordinator: CSAPPLEGATE

certified by: Michael C. Sugas

. .

ب

. .

Radian Work Order: 89-07-266

Method:SW8240-Illinois list (1)			-		
List:						
Sample ID:	S85A	S8 58	SB5C	SB6A	SB 6B	SB6C
Factor:	10.000	100.000	100.000	10.000	10.000	50.00
Results in:	ug/ Kg	ug/Kg	ug/Kg	u g/Kg	ug/Kg	ug/Kg
	01A	0 2A	03A	04A	05A	06A
Matrix:	solid	solid	solid	solid	solid	solid
Benzene	<50	<500	<500	<50	<50	<250
1,2-Dichloroethane	<50	<500	<500	<50	<50	<250
Ethyl benzene	<50	780 *	<500	<50	97*	710*
n-Hexane	<100	<1000	<1000	<100	<100	<500
Toluene	<50	650*	<500	<50	<50	250*
Xylenes	<150	8000	<1500	<150	1100	<u>6600</u>
Surrogate Recovery(%)						
1,4-Bromoftuorobenzene	100 Q	129 Q	101 9	99 Q	226 Q	195 Q
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	101	103	100	101	98	100
Control Limits: 91 to 110						
Toluene-d8	103	99	102	104 q	98	99
Control Limits: 91 to 103						

Q Outside control limits

...

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Illinois list (1)					
List:						
Sample ID:	SB7A	S878	SB8A	S 888	SBBC	SB9A
Factor:	100.000	100.000	100.000	50.000	100.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	07A	0 8A	09A	10A	11A	12A
Matrix:	solid	solid	solid	solid	solid	solid
Benzene	<500	<500	<500	<250	<500	<5.0
1,2-Dichloroethane	<500	<500	<500	<250	<500	<5.0
Ethyl benzene	<500	<500	<500	<250	<500	<5.0
n-Hexane	<1000	<1000	<1000	<500	<1000	<10
Toluene	<500	<500	<500	560*	. <500	<5.0
Xylenes	22000	9800	<1500	9000	3200*	<15
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	236 Q	206 Q	93	226 Q	144 Q	99 Q
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	101	99	101	94	91	102
Control Limits: 91 to 110						
Toluene-d8	101	102	100	99	99	101
Control Limits: 91 to 103						

⁴ Outside control limits

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Illinois list (1)			
List:				
Sample ID:	SB98	SB9C	SYSTEM BLANK	
Factor:	1.000	1.000	1.000	
Results in:	ug/ Kg	ug/Kg	ug/Kg	
	13A	14A	15A	
Matrix:	solid	solid	solid	
Benzene	<5.0	<5.0	<5.0	
1,2-Dichloroethane	<5.0	<5.0	<5.0	
Ethyl benzene	<5.0	<5.0	<5.0	
n-Hexane	<10	<10	<10	
Totuene	<5.0	<5.0	<5.0	
Xylenes	<15	<15	<15	
Surrogate Recovery(%)				
1,4-Bromofluorobenzene	99 Q	98	94	
Control Limits: 62 to 98				
1,2-Dichloroethane-d4	100	102	97	
Control Limits: 91 to 110				
Toluene-d8	96	99	104 g	
Control Limits: 91 to 103				

Q Outside control limits

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	s (1)					
List:8240 Table 1						
Sample ID:	SB5A	S B58	5 85C	SB6A	S86 B	SB6C
factor:	10.000	100_000	100.000	10.000	10.000	50.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	018	028	038	048	05 8	06 B
Matrix:	solid	solid	solid	solid	solid	solid
Acetone	<1000	<10000	<10000	<1000	<1000	<5000
Acrolein	<750	<7500	<7500	<750	<750	<3800
Acrylonitrile	<250	<2500	<2500	<250	<250	<1300
Benzene	<50	<500	<500	<50	<50	<250
Bromodichloromethane	<50	<500	<500	<50	<50	<250
Bromomethane	<100	<1000	<1000	<100	<100	<500
Carbon disulfide	<50	<500	<500	<50	<50	<250
Carbon tetrachloride	<50	<500	<500	<50	<50	<250
Chlorobenzene	<50	<500	<500	<50	<50	<250
Chloroethane	<100	<1000	<1000	<100	<100	<500
2-Chloroethyl vinyl ether	<100	<1000	<1000	<100	<100	<500
Chloroform	<50	<500	<500	<50	<50	<250
Chloromethane	<100	<1000	<1000	<100	<100	<500
Díbromochloromethan e	<50	<500	<500	<50	<50	<250
Dibromomethan e	<50	<500	<500	<50	<50	<250
trans-1,4-Dichloro-2-butene	<50	<500	<500	<50	<50	<250
Dichlorodifluoromethane	<50	3300	<500	<50	<50	<250
1,1-Dichloroethane	<50	<500	<500	<50	<50	<250
1,2-Dichloroethane	<50	<500	<500	<50	<50	<250
1,1-Dichloroethene	<50	<500	<500	<50	<50	<250
trans-1,2-Dichloroethene	<50	<500	<500	<50	<50	<250
1,2-Dichloropropane	<50	<500	<500	<50	<50	<250
cis-1,3-Dichloroprop ene	<50	<500	<500	<50	<50	<250
trans-1,3-Dichloropropene	<50	<500	<500	<50	<50	<250
Ethyl benzene	<50	<500	<500	<50	97*	700*
Ethyl methacrylate	<50	<500	<500	<50	<50	<250
2-Hexanone	<500	<5000	<5000	<500	<500	<2500
Iodomethane	<50	<500	<500	<50	<50	<250
Methyl ethyl ketone	<1000	<10000	<10000	<1000	<1000	<5000
4-Methyl-2-pentanone(MIBK)	<500	<5000	<5000	<500	<500	<2500

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	s (1)					
List:8240 Table 1						
Sample ID:	SB5A	S 85B	SB5C	SB6A	SB 6B	SB6C
Factor:	10.000	100.000	100.000	10.000	10.000	50.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	018	028	0 3B	048	05 8	068
Matrix:	solid	solid	solid	solid	solid	solid
Methylene chloride	<50	<500	<500	<50	<50	<250
Styrene	<50	<500	<500	<50	<50	<250
1,1,2,2-Tetrachloroethane	<50	<500	<500	<50	<50	<250
Tetrachloroethene	<50	2500	<500	<50	280	1600
Totuene	<50	<50 0	<500	<50	<50	250*
Tribromomethane(Bromoform)	<50	<500	<500	<50	<50	<250
1,1,1-Trichloroethane	<50	6200	<500	<50	54*	1400
1,1,2-Trichloroethane	<50	<50 0	<500	<50	<50	<250
Trichloroethene	<50	3800	<500	<50	<50	<250
Trichlorofluoromethane	⊲5 0	<500	<500	<50	<50	<250
1,2,3-Trichloropropane	<50	<500	<500	<50	<50	<250
Vinyl acetate	<50	<500	<500	<50	<50	<250
Vinyl chloride	<100	<1000	<1000	<100	<100	<500
Xylenes	<50	8000	<500	<50	1100	6600
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	100 q	129 Q	101 Q	99 g	226 a	195 Q
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	101	103	100	101	98	99
Control Limits: 91 to 110						
Toluene-d8	103	99	102	104 @	98	99
Control Limits: 91 to 103						

Q Outside control limits

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	s (1)					
List:8240 Table 1						
Sample 1D:	SB7A	SB 78	SB&A	SB 88	SBBC	SB9A
factor:	100.000	100.000	100.000	50.000	100.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	07B	088	098	108	11B	128
Matrix:	solid	solid	solid	solid	solid	solic
Acetone	<10000	<10000	<10000	<5000	<10000	<100
Acrolein	<7500	<7500	<7500	<3800	<7500	<75
Acrylonitrile	<2500	<2500	<2500	<1300	<2500	<25
Benzene	<500	<500	<500	<250	<500	<5.0
Bromodichloromethane	<500	<500	<500	<250	<500	<5.0
Bromomethane	<1000	<1000	<1000	<500	<1000	<10
Carbon disulfide	<500	<500	<500	<250	<500	<5.0
Carbon tetrachloride	<500	<500	<500	<250	<500	<5.0
Chlorobenzene	<500	<500	<500	<250	<500	<5.0
Chloroethane	<1000	<1000	<1000	<500	<1000	<10
2-Chloroethyl vinyl ether	<1000	<1000	<1000	<500	<1000	<10
Chloroform	<500	<500	<500	<250	<500	<5.0
Chloromethane	<1000	<1000	<1000	<500	<1000	<10
Dibromochloromethane	<500	<500	<500	<250	<500	<5.0
Oibromomethane '	<500	<500	<500	<250	<500	<5.0
trans-1,4-Dichloro-2-butene	<500	<500	<500	<250	<500	<5.0
Dichlorodifluoromethane	<500	<500	<500	<250	<500	<5.0
1,1-Dichloroethane	<500	<500	<500	<250	<500	<5.0
1,2-Dichloroethane	<500	<500	<500	<250	<500	<5.0
1,1-Dichloroethene	<500	<500	<500	<250	<500	<5.0
trans-1,2-Dichloroethene	<500	<500	<500	<250	<500	<5.0
1,2-Dichloropropane	<500	<500	<500	<250	<500	<5.0
cis-1,3-Dichloropropene	<500	<500	<500	<250	<500	<5.0
trans-1,3-Dichloropropene	<500	<500	<500	<250	<500	<5.0
Ethyl benzene	<500	<500	<500	<250	<500	<5.0
Ethyl methacrylate	<500	<500	<500	<250	<500	<5.0
2-Hexanone	<5000	<5000	<5000	<2500	<5000	<50
Iodomethane	<500	<500	<500	<250	<500	<5.0
Methyl ethyl ketone	<10000	<10000	<10000	<5000	<10000	<100
4-Methyl-2-pentanone(MIBK)	<5000	<5000	<5000	<2500	<5000	<50

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	s (1)					
List:8240 Table 1						
Sample ID:	SB7A	S B78	ABB2	\$888	S88C	SB9A
Factor:	100.000	100.000	100.000	W. v?	100.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	078	088	098	108	118	12 B
Matrix:	solid	solid	solid	solid	solid	solid
Methylene chloride	<500	<500	<500	<250	<500	<5.0
Styrene	<500	<500	<500	<250	<500	<5.0
1,1,2,2-Tetrachloroethane	<500	<500	<500	<250	<500	<5.0
Tetrachloroethene	<500	<500	<500	<250	1500*	<5.0
Toluene	<500	<500	<500	550*	<500	<5.0
Tribromomethane(Bromoform)	<500	<500	<500	<250	<500	<5.0
1,1,1-Trichloroethane	<500	<500	<500	<250	<500	<5.0
1,1,2-Trichloroethane	<500	<500	<500	<250	<500	<5.0
Trichloroethene	<500	<50 0	<500	<250	<500	<5.0
Trichlorofluoromethane	<500	<500	<500	<250	<500	<5.0
1,2,3-Trichloropropane	<500	<500	<500	<250	<500	<5.0
Vinyl acetate	<500	<500	<500	<250	<500	<5.0
Vinyl chloride	<1000	<1000	<1000	<500	<1000	<10
Xylenes	22.000	9800	<500	9000	3200	<5.0
Surrogate Recovery(%)						
1,4-Bromoftuorobenzene	2 3 6 Q	206 9	93	226 Q	144 Q	99 Q
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	101	99	101	94	91	102
Control Limits: 91 to 110						
Toluene-dS	101	102	100	99	99	101
Control Limits: 91 to 103						

Q Outside control limits

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ERM - North Central

Method:SW8240-Volatile Organic	s (1)			
List:8240 Table 1				
Sample ID:	SB9A	S B9C	SYSTEM BLANK	
Factor:	1.000	1.000	1.000	
Results in:	ug/Kg	ug/Kg	ug/ Kg	•
	138	148	158	
Matrix:	solid	solid	solid	
Acetone	<100	<100	<100	
Acrolein	<75	<75	<75	
Acrylonitrile	<25	<25	<25	
Benzene	<5.0	<5.0	<5.0	
Bromodichloromethane	<5.0	<5.0	<5.0	
Bromomethan e	<10	<10	<10	
Carbon disulfide	⋖5.0	<5.0	<5.0	
Carbon tetrachloride	<5.0	<5.0	<5.0	
Chlorobenzene	<5.0	<5.0	<5.0	
Chloroethane	<10	<10	<10	
2-Chloroethyl vinyl ether	<10	<10	<10	
Chloroform	<5.0	<5.0	<5.0	
Chloromethane	<10	<10	<10	
Dibromochloromethane	<5.0	<5.0	<5.0	
Dibromomethane	<5.0	<5.0	<5.0	
trans-1,4-Dichloro-2-butene	<5.0	<5.0	<5.0	
Dichlorodifluoromethane	<5.0	<5.0	<5.0	ROCKEOR
1,1-Dichloroethane	<5.0	<5.0	<5.0	ROCKFORD REGION
1,2-Dichloroethane	<5.0	<5.0	<5.0	HEGION
1,1-Dichloroethene	<5.0	<5.0	<5.0	NOV 0 1 1989
trans-1,2-Dichloroethene	<5.0	<5.0	<5.0	101 0 1 1989
1,2-Dichloropropane	<5.0	<5.0	<5.0	Environmental
cis-1,3-Dichloropropene	<5.0	<5.0	<5.0	Environmental Protection Agency State of Illinois
trans-1,3-Dichloropropene	<5.0	<5.0	<5.0	State of Illinois
Ethyl benzene	<5.0	<5.0	<5.0	
Ethyl methacrylate	<5.0	<5.0	<5.0	
2-Hexanone	<50	<50	<50	
Iodomethane	<5.0	<5.0	<5.0	
Methyl ethyl ketone	<100	<100	<100	
4-Methyl-2-pentanone(MIBK)	<50	<50	<50	

⁽¹⁾ for a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	s (1)			
List:8240 Table 1				
Sample ID:	SB9A	SB9C	SYSTEM BLANK	
Factor:	1.000	1.000	1.000	
Results in:	ug/Kg	ug/Kg	ug/Kg	
	138	148	15B	
Matrix:	solid	sol i d	solid	
Methylene chloride	<5.0	<5.0	<5.0	······································
Styrene	<5.0	<5.0	<5.0	
1,1,2,2-Tetrachloroethane	<5.0	<5.0	<5.0	
Tetrachloroethene	<5.0	<5.0	<5.0	
Toluene	<5.0	<5.0	<5.0	
Tribromomethane(Bromoform)	<5.0	<5.0	<5.0	
1,1,1-Trichloroethane	<5.0	<5.0	<5.0	
1,1,2-Trichloroethane	<5.0	<5.0	<5.0	
Trichloroethene	<5.0	<5.0	<5.0	
Trichlorofluoromethane	<5.0	<5.0	<5.0	
1,2,3-Trichloropropane	<5.0	<5.0	<5.0	
Vinyl acetate	<5.0	<5.0	<5.0	
Vinyl chloride	<10	<10	<10	
Xylenes	<5.0	<5.0	<5.0	
Surrogate Recovery(%)				
1,4-Bromofluorobenzene	98	98	94	
Control Limits: 62 to 98				
1,2-Dichloroethane-d4	100	102	97	
Control Limits: 91 to 110				
Toluene-d8	96	99	104 q	
Control Limits: 91 to 103				

Q Outside control limits

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8270-Illinois list (1	1)					
List:						
Sample ID:	S85A	\$ 858	SB5C	\$86 A	\$ 868	S B6C
Factor:	3.000	1.000	1.000	3.000	1.000	1.000
Results in:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	018	0 2B	038	048	05 B	068
Hatrix:	solid	solid	solid	solid	solid	solid
Acenaph thene	<3600	<1200	<1200	<3600	<1200	<1200
Acenaphthylene	<2000	<660	<660	<2000	<660	<660
Anthracene	<2000	<660	<660	<2000	<660	<660
Benzo(a)anthracene	<26	54	61	140	70	17*
Benzo(a)pyrene	<45	<15	<15	63*	32*	<15
Benzo(b)fluoranthene	<36	<12	21*	140*	40*	<12
Benzo(g,h,i)perylene	<150	<51	<51	<150	<51	<51
Benzo(k)fluoranthene	<33	<11	<11	100*	32*	<11
Chrysene	<300	<100	<100	<300	<100	<100
Dibenz(a,h)anthracene	<60	<20	<20	<60	<20	<20
Fluoranthene	<420	<140	<140	660 *	280*	<140
Fluorene	. <420	<140	690 *	<420	<140	<140
Indeno(1,2,3-cd)pyrene	<87	<29	<29	<87	<29	<29
Naphthalene	<2000	<660	1100*	<2000	800*	<660
Phenanthrene	<2000	<660	1200*	<2000	<660	<660
Pyrene	<540	<180	210*	*008	250*	<180
Surrogate Recovery(%)						
2-Fluorobiphenyl	100	105	108	117	106	80
Control Limits: 33 to 153						
2-Fluorophenol	93	95	107	102	99	51
Control Limits: 20 to 158						
Nitrobenzene-d5	83	88	91	89	93	48
Control Limits: 21 to 159						
Phenol-d5	90	94	94	92	98	61
Control Limits: 27 to 154						
Terphenyl-d14	86	79	136	115	77	80
Control Limits: 0 to 223						
2,4,6-Tribromphenol	95	91	84	82	96	89
Control Limits: 0 to 179						

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

Method:SW8270-Illinois list (1)					
List:						
Sample ID:	SB7A	S 87B	SB8A	\$ 88 8	S B8C	S B9A
Factor:	3.000	3.000	3.000	3.000	3.000	3.000
Results in:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	07 8	088	098	108	118	128
Matrix:	solid	solid	solid	solid	solid	solid
Acenephthene	<3600	<3600	<3600	<3600	<3600	<3600
Acenaphthylene	<2000	<2000	<2000	<2000	<2000	<2000
Anthrac ene	<2000	<2000	<2000	<2000	<2000	<2000
Benzo(a)anthracene	150	38*	<26	39*	<26	110*
Benzo(a)pyrene	69*	<45	<45	<45	<45	100*
Benzo(b)fluoranthene	81*	<36	<36	<36	<36	91*
8enzo(g,h,i)perylene	<150	<150	<150	<150	<150	<150
Benzo(k)fluoranthene	82*	<33	<33	<33	<33	<u>79*</u>
Chrysene	<300	<300	<300	<300	<300	<300
Dibenz(a,h)anthracene	<60	<60	<60	<60	<60	<60
Fluoranthene	<420	<420	<420	<420	<420	<420
Fluorene	<420	<420	<420	<420	<420	<420
Indeno(1,2,3-cd)pyrene	<87	<87	<87	<87	<87	<87
Naphthalen a	2500*	<2000	<2000	<2000	<2000	<2000
Phenanthrene '	<2000	<2000	<2000	<2000	<2000	<2000
Pyrene	<540	<540	<540	<540	<540	<540
Surrogate Recovery(%)						
2-Fluorobiphenyl	102	104	86	101	85	88
Control Limits: 33 to 153						
2-Fluorophenol	94	82	83	77	66	85
Control Limits: 20 to 158						
Nitrobenzene-d5	82	78	84	80	64	89
Control Limits: 21 to 159						
Phenol-d5	84	80	80	82	70	76
Control Limits: 27 to 154						
Terphenyl-d14	81	81	86	73	86	88
Control Limits: 0 to 223						
2,4,6-Tribromphenol	77	85	99	95	93	91
Control Limits: 0 to 179						

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

Radian Work Order: 89-07-266

List:			
Sample ID:	SB9A	SB9C	REAGENT BLANK
Factor:	1.000	1.000	1.000
Results in:	ug/kg	ug/kg	ug/kg
	13B	148	16A
Matrix:	solid	solid	solid
Acenaphthene	<1200	<1200	<1200
Acenaphthylene	<660	<660	<660
Anthracene	<660	<660	<660
Benzo(a)anthracene	<8.7	<8.7	<8.7
Benzo(a)pyrene	<15	<15	<15
Benzo(b)fluoranthene	<12	<12	<12
Benzo(g,h,i)perylene	<51	<51	<51
Benzo(k)fluoranthene	<11	<11	<11
Chrysene	<100	<100	<100
Dibenz(a,h)anthracene	<20	<20	<20
Fluoranthene	<140	<140	<140
Fluorene	<140	<140	<140
Indeno(1,2,3-cd)pyrene	<29	<29	<29
Naphthalene	<660	<660	<660
Phenanthrene	<660	<660	<660
Pyrene	<180	<180	<180
Surrogate Recovery(%)			
2-Fluorobiphenyl	88	81	92
Control Limits: 33 to 153			
2-Fluorophenol	81	80	83
Control Limits: 20 to 158			
Nitrobenzene-d5	79	77	80
Control Limits: 21 to 159			
Phenot-d5	81	78	83
Control Limits: 27 to 154			
Terphenyl-d14	94	86	90
Control Limits: 0 to 223			
2,4,6-Tribromphenol	95	85	96
Control Limits: 0 to 179			

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ر . ا

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

Method:SW8270-Semi-Volatiles ('	1)		
List:Matrix Spike List		_	
Sample ID:	SB7A MS	SB7A MSD	
Factor:	0 .0	0.0	
Results in:	x	x	
	07 c	070	
Matrix:	solid	solid	
Acenaphthene	84	86	
4-Chloro-3-methylphenol	122	114	
2-Chlorophenol	92	92	
1,4-Dichlorobenzene	92	91	
2,4-Dinitrotoluene	108	110	
N-Nitrosodipropylamine	101	101	
4-Nitrophenol	111	116	
Pentachlorophenoi	114	121	
Phenol	94	94	
Pyrene	134	135	
1,2,4-Trichlorobenzene	86	92	
Surrogate Recovery(%)			
2-Fluorophenol	112	106	
Control Limits: 20 to 158			
Phenot-d5	118	115	
Control Limits: 27 to 154			
Nitrobenzene-d5	91	106	
Control Limits: 21 to 159			
2-Fluorobiphenyl	131	131	
Control Limits: 33 to 153			
2,4,6-Tribromophenal	83	84	
Control Limits: 0 to 179			
Terphenyl-d14	84	86	
Control Limits: 0 to 223			

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ERM - North Central

Radian Work Order: 89-07-266

		Sample Id	dentifications a	and Dates			
Sample	1D	SBSA	\$B5 B	SB5C	SB6A	SB6B	SB6C
Date S	Sampled	07/25/89	07/25/89	07/25/89	07/24/89	07/24/89	07/24/89
Date R	Received	07/2 7/89	07/27/89	07/27/89	07/27/89	07/27/89	07/27/89
Matrix	¢ .	solid	solid	solid	solid	sol i d	solid
		01	02	03	04	05	06
/8240-Illinois	list						
P	repared	08/02/ 89	08/03/89	08/03/89	08/03/89	08/03/89	08/03/89
	\na l yzed	08/02/89	08/03/89	08/03/89	08/03/89	08/03/89	08/03/89
	Inalyst	MCL	MCL	MCL	HCL	MCL	MCL
F	ile ID	74465	74487	74488	74482	74483	74484
R	Report as	received	received	received	rece i ved	received	received
⊌8240-Volatile	Organics						
P	repared	08/02/89	08/03/89	08/03/89	08/03/89	08/03/89	08/03/89
,	Inalyzed	08/02/89	08/03/89	08/03/89	08/03/89	08/03/89	08/03/89
	lnalyst	MCL	MCL	NCL	HCL	MCL	MCL
F	ile ID	74465	74487	74488	74482	74483	74484
ş	Report as	received	received	received	received	received	received
w8270-11linois	list						
F	Prepared	08/02/89	08/02/89	08/02/89	08/02/89	08/02/89	08/02/89
	Inalyzed	08/07/89	08/07/89	08/08/89	08/08/89	08/07/89	08/07/89
,	Inalyst	MCK	MCK	MCK	MCK	MCK	MCK
1	File ID	82173	82179	82186	82191	82178	82175
F	Report as	received	received	received	received	received	received

سأ

ERM - North Central

ديا

. .

		Sample Id	dentifications :	and Dates			
Sample II	D	SB7A	SB7B	SB8A	\$8 88	SB&C	SB9A
Date Sam	pled	07/25/89	07/25/89	07/25/89	07/25/89	07/25/89	07/25/89
Date Rec	eived	07/27/89	07/27/89	07/27/89	07/27/89	07/27/89	07/27/89
Matrix		solid	solid	solid	solid	sol id	solid
		07	08	09	10	11	12
:48240-Illinois l	ist						
Pre	pared	08/03/89	08/03/89	08/03/89	08/07/89	08/07/89	08/04/89
Ana	lyzed	08/03/89	08/03/89	08/03/89	08/07/89	08/07/89	08/04/89
Ana	lyst	MCL	MCL	MCL	MCL	MCL	MCL
File	e ID	74489	74490	74491	74528	74529	74515
Rep	ort as	received	received	rece i ved	received	received	received
W8240-Volatile O	rganics						
Pre	pared	08/03/89	08/03/89	08/03/89	08/07/89	08/07/89	08/04/89
Ana	lyzed	08/03/89	08/03/89	08/03/89	08/07/89	08/07/89	08/04/89
Ana	lyst	MCL	HCL	MCL	MCL	MCL	MCL
File	e ID	74489	74490	74491	74528	74529	74515
Rep	ort as	received	received	received	received	received	received
:8270-111inois 1	ist						
Pre	pared	08/02/89	08/02/89	08/02/89	08/02/89	08/02/89	08/02/89
Ana	lyzed	08/08/89	08/08/89	08/07/89	08/07/89	08/07/89	08/08/89
Ana	lyst	MCK	NCK	MCK	HCK	HCK	MCK
Fil	e ID	82188	82185	82177	82176	82180	82187
Rep	ort as	received	received	received	received	received	received
8270 - Seai - Volat	iles						
Pre	pared	08/02/89					
Ana	lyzed	08/08/89					
Ane	lyst	MCK					
Fil	e ID	82190					
Rep	ort as	received					

ERM - North Central Radian Work Order: 89-07-266

	Sample I	dentifications	and Dates	
Sample ID	\$89 8	SB9C	SYSTEM BLANK	REAGENT BLANK
Date Sampled	07/25/89	07/25/89		
Date Received	07/27/89	07/27/89	07/27/89	07/27/89
Matrix	solid	solid	solid	solid
	13	14	15	16
40-Illinois list			······································	· · · · · · · · · · · · · · · · · · ·
Prepared	08/04/89	08/05/89	08/03/89	
Analyzed	08/04/89	08/05/89	08/03/89	
Analyst	MCL	MCL	MCL	
File ID	74516	74517	74477	
Report as	received	received	received	
40-Volatile Organics				
Prepared	08/04/89	08/05/89	08/03/89	
Analyzed	08/04/89	08/05/89	08/03/89	
Analyst	MCL	MCL	MCL	
File ID	74516	74517	74477	
Report as	received	received	received	
270-Illinois list				
Prepared ,	08/02/89	08/02/89		08/02/89
Analyzed	08/07/89	08/07/89		08/07/89
Analyst	MCK	MCK		HCK
File ID	82172	82174		82171
Report as	received	received		received

Appendix A

Comments, Notes and Definitions

.

Ĺ.

- A This flag indicates that a spike is an analytical and/or postdigestion spike. These spikes have not been subjected to the extraction or digestion step.
- 8 This flag indicates that the analyte was detected in the reagent blank but the sample results are not corrected for the amount in the blank.
- **Work methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The C flag indicates that the analyte has been confirmed by analysis on a second column.
- D This flag identifies all analytes identified in analysis at a secondary dilution factor. In an analysis some compounds can exceed the calibration range of the instrument. Therefore two analyses are performed, one at the concentration of the majority of the analytes, and a second with the sample diluted so that high concentration analyte(s) fall within the calibration range.
- E The reported value is estimated because of the presence of interference. The potential source of the interference is included in the report narrative.
- G This flag identifies a GC/MS result whose concentration exceeds the calibration range for that specific analysis. Usually if one or more compounds have a response greater than full scale, the sample or extract is diluted and re-analyzed.
- J Indicates an estimated value for GC/MS data. This flag is used either when estimating a concentration for tentatively identified compounds where a response factor of 1 is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit.
- NA This analyte was not analyzed.
- NC Applies to RPD and spike recovery results. The relative percent difference (RPD) and spike recovery are not calculated when a result value is less than five times the detection limit or obvious matrix interferences are present. See * definition for further explanation of the unreliability of data near the detection limit. A spike recovery is not calculated when the sample result is greater than four times the spike added concentration because the spike added concentration is considered insignificant.
- ND This flag (or <) is used to denote analytes which are not detected at or above the specified detection limit. The value to the right of the < symbol is the method specified detection limit for the sample.
- NR This analyte was not requested by the client.
- NS This analyte or surrogate was not added (spiked) to the sample for this analysis.

- N\A A result or value is not available for this parameter, usually a detection limit.
- Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The P flag indicates that the analyte has been confirmed previously. This flag is applicable to analyses of samples arising from a regular sampling program as a specific sample source; for example, a quarterly well monitoring program.
- This quality control standard is outside method or laboratory specified control limits. This flag is applied to matrix spike, analytical QC spike, and surrogate recoveries; and to RPD(relative percent difference) values for duplicate analyses and matrix spike/matrix spike duplicate result.
- R This flag indicates that the analyte was detected in the reagent blank and the sample results are corrected for the amount in the blank.
- S This flag indicates that a specific result from a metals analysis has been obtained using the Method of Standard Addition.
- U Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The U flag indicates that second column was not requested.
- X Most methods of analysis by gas chromatography recommend reanalysis on a second column of dissimilar phase to resolve compounds of interest from interferences that may occur and for analyte confirmation. The X flag indicates a second column confirmation was performed but the analyte was not confirmed and is likely a false positive.
- * The asterisk(*) is used to flag results which are less than five times the method specified detection limit. Studies have shown that the uncertainty of the analysis will increase exponentially as the method detection limit is approached. These results should be considered approximate.

TERMS USED IN THIS REPORT:

Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications.

Compound - See Analyte.

نا

Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories' method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or clearup. (Refer to Factor, below)

EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified.

Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), use of cleanup procedures, or dilution of extracts/digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100.

Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste.

Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary.

Units	· ug/L	micrograms per liter (parts per billion); liquids/water
	ug/Kg	micrograms per kilogram (parts per billion); soils/solids
	ug/M3	micrograms per cubic meter; air samples
	mg/L	milligrams per liter (parts per million);liquids/water
	mg/Kg	milligrams per kilogram (parts per million);soils/solids
	X	percent; usually used for percent recovery of QC standards
	us/cm	conductance unit; microSiemans/centimeter
	mL/hr	milliliters per hour; rate of settlement of matter in water
	NTU	turbidity unit; nephelometric turbidity unit
	cn	color unit; equal to 1 mg/L of chloroplatinate sait

Method: SW8240-Volatile Organic	s (1)					
List:8240 Table 1						
Sample ID:	SB1A	S818	S 81C	S B2A	S B2B	SB2C
Factor:	1.000	1.000	1.000	1.000	1.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	038	048	058	068	078	088
Matrix:	solid	solid	solid	solid	solid	solid
Methylene chloride	124	11*	12*	<5.0	<5.0	11*
Styrene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2,2-Tetrachloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Toluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tribromomethane(Bromoform)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichlorofluoromethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,3-Trichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl acetate	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl chloride	<10	<10	<10	<10	<10	<10
Xylenes	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	97	96	98	98	95	93
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	101	101	99	98	100	100
Control Limits: 91 to 110						
Toluene-d8	99	98	100	98	97	97
Control Limits: 91 to 103						

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Radian Work Order: 89-07-265

Method:SW8240-Volatile Organic	s (1)				i	
List:8240 Table 1						
Sample ID:	SB3A	\$ 838	S83C	SB4A	\$ 84B	SB4C
Factor:	1.000	1.000	1.000	1.000	1.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	u g/Kg	ug/Kg
	098	108	118	128	138	148
Matrix:	solid	solid	solid	solid	solid	solid
Acetone	<100	<100	<100	<100	<100	<100
Acrolein	<75	<75	<75	<75	<75	<75
Acrylonitrile	<25	<25	<25	<25	<25	<25
Benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromodichloromethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromomethane	<10	<10	<10	<10	<10	<10
Carbon disulfide	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon tetrachloride	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroethane	<10	<10	<10	<10	<10	<10
2-Chloroethyl vinyl ether	<10	<10	<10	<10	<10	<10
Chloroform	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloromethane	<10	<10	<10	<10	<10	<10
Dibromochloromethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Difbromomethane '	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,4-Dichloro-2-butene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dichlorodifluoromethane	8.9*	<5.0	8.9*	11*	18*	<5.0
1,1-Dichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,2-Dichloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	⋖5.0	<5.0	<5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethyl benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethyl methacrylate	⋖5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Hexanone	<50	<50	<50	<50	<50	<50
Iodomethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl ethyl ketone	<100	<100	<100	<100	<100	<100
4-Methyl-2-pentanone(MIBK)	<50	<50	<50	<50	<50	<50

^{*} Est. result less than 5 times detection limit

...

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ERM - North Central

Method:SW8240-Volatile Organic	:s (1)					
List:8240 Table 1						
Sample ID:	S B3A	S B38	SB3C	SB4A	S 848	S 84C
Factor:	1.000	1.000	1.000	1.000	1.000	1.000
Results in:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	098	108	118	128	138	148
Matrix:	solid	solid	solid	solid	solid	solic
Methylene chloride	9.7*	<5.0	<5.0	<5.0	<5.0	<5.0
Styrene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2,2-Tetrachioroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Toluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tribromomethane(Bromoform)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichlorofluoromethane	<5.0	<5.0	<5.0	12*	<5.0	<5.0
1,2,3-Trichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl acetate	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl chloride	<10	<10	<10	<10	<10	<10
Xylenes	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	92	98	96	97	98	96
Control Limits: 62 to 98						
1,2-Dichloroethane-d4	100	101	101	100	101	101
Control Limits: 91 to 110						
Toluene-d8	99	99	98	96	98	100
Control Limits: 91 to 103						

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method:SW8240-Volatile Organic	rs (1)
List:8240 Table 1	
Sample ID:	SYSTEM BLANK
Factor:	1.000
Results in:	ug/Kg
	168
Matrix:	solid
Acetone	<100
Acrolein	<75
Acrylonitrile	∢ප
Benzene	<5.0
Bromodichloromethane	<5.0
Bromomethan e	<10
Carbon disulfide	<5.0
Carbon tetrachioride	<5.0
Chlorobenzene	<5.0
Chloroethan e	<10
2-Chloroethyl vinyl ether	<10
Chloroform	<5.0
Chloromethane .	['] <10
Dibromochloromethane	<5.0
Dibromomethane	<5.0
trans-1,4-Dichloro-2-butene	<5.0
Dichlorodifluoromethane	<5.0
1,1-Dichloroethane	<5.0
1,2-Dichloroethane	<5.0
1,1-Dichtoroethene	<5.0
trans-1,2-Dichloroethene	<5.0
1,2-Dichloropropane	<5.0
cis-1,3-Dichloropropene	<5.0
trans-1,3-Dichloropropene	<5.0
Ethyl benzene	<5.0
Ethyl methacrylate	<5.0
2-Hexanone	<50
Iodomethane	<5.0
Hethyl ethyl ketone	<100
4-Methyl-2-pentanone(MIBK)	<50

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method: SW8240-Volatile Organic	s (1)	
List:8240 Table 1		
Sample ID:	SYSTEM BLANK	
Factor:	1.000	
Results in:	ug/Kg	
	168	
Matrix:	solid	
Methylene chloride	<5.0	
Styrene	<5.0	
1,1,2,2-Tetrachloroethane	<5.0	
Tetrachloroethene	<5.0	
Toluene	<5.0	
Tribromomethane(Bromoform)	<5.0	
1,1,1-Trichloroethane	<5.0	
1,1,2-Trichloroethane	<5.0	
Trichloroethene	<5.0	
Trichlorofluoromethane	<5.0	
1,2,3-Trichloropropane	<5.0	
Vimple sections		
Vinyl chloride	<10	
Xylenes	<5.0	
Surrogate Recovery(%)		
1,4-Bromofluorobenzene	99 Q	
Control Limits: 62 to 98		
1,2-Dichloroethane-d4	100	
Control Limits: 91 to 110		
Toluene-d8	100	
Control Limits: 91 to 103		

Q Outside control limits

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ERM - North Central

lethod:SW8240-Volatile Organic	s (1)			
List:8240 Table 1				
Sample ID:	151	DECON I	SYSTEM BLANK	
factor:	5.000	1.000	1.000	
Results in:	Ug/L	ug/L	ug/L	
	018	028	158	
latrix:	water	water	water	
Acetone	<500	<100	<100	
Acrolein	<380	<75	₹75	
Acrylonitrile	<130	<25	<25	
Benzene	<ষ	<5.0	<5.0	
Bromodichloromethane	<8	<5.0	<5.0	
3romomethane	<50	<10	<10	
Carbon disulfide	<স্ঠ	<5.0	<5.0	
Carbon tetrachloride	<স্ত	<5.0	<5.0	
Chlarobenzene	<25	<5.0	<5.0	
Chloroethane	<50	<10	<10	
2-Chloroethyl vinyl ether	<50	<10	<10	
Chloroform	<≊	<5.0	<5.0	
Chloromethane	<50	<10	<10	
Dibromochloromethane	<25	<5.0	<5.0	
Dibromomethane	<25	<5.0	<5.0	
trans-1,4-Dichloro-2-butene	<25	<5.0	<5.0	
Dichlorodifluoromethane	<25	<5.0	<5.0	
1,1-Dichloroethane	<25	<5.0	<5.0	
1,2-Dichloroethane	<25	<5.0	<5.0	
1,1-Dichloroethene	<25	<5.0	<5.0	
trans-1,2-Dichloroethene	<25	<5.0	<5.0	
1,2-Dichloropropane	<25	<5.0	<5.0	
cis-1,3-Dichloropropene	<25	<5.0	<5.0	
trans-1,3-Dichtoropropene	<25	<5.0	<5.0	
Ethyl benzene	<25	<5.0	<5.0	
Ethyl methacrylate	<25	<5.0	<5.0	
2-Hexanone	<250	<50	<50	
Iodomethane	<25	<5.0	<5.0	
Methyl ethyl ketone	<500	95*	<100	
4-Methyl-2-pentanone(NIBK)	<250	<50	<50	

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

Method: SW8240-Volatile Organic	s (1)			
List:8240 Table 1				
Sample ID:	TSI	DECON I	SYSTEM BLANK	
Factor:	5.000	1,000	1.000	
Results in:	ug/L	ug/L	ug/L	
	018	028	15 8	
Matrix:	water	water	water	
Methylene chioride	670	<5.0	<5.0	
Styrene	<25	<5.0	<5.0	
1,1,2,2-Tetrachloroethane	<25	<5.0	<5.0	
Tetrachloroethene	<25	<5.0	<5.0	
Totuene	<25	<5.0	<5.0	
Tribromomethane(Bromoform)	<25	<5.0	<5.0	
1,1,1-Trichloroethane	<25	<5.0	<5.0	
1,1,2-Trichloroethane	<25	<5.0	<5.0	
Trichloroethene	<25	<5.0	<5.0	
Trichlorofluoromethane	<25	<5.0	<5.0	
1,2,3-Trichloropropane	<25	<5.0	<5.0	
Vinyi acetate	<25	<5.0	<5.0	
Vinyl chloride	<50	<10	<10	
Xylenes	1500	<5.0	<5.0	
Surrogate Recovery(%)				
1,4-Bromofluorobenzene	157	97	99	
Control Limits: 55 to 167	131	71	**	
1,2-Dichloroethane-d4	100	101	100	
Control Limits: 39 to 156				
Toluene-d8	103	101	100	
Control Limits: 58 to 146	•••			

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

ERM - North Central

Method:SW8270-Illinois list (1)					
List:						
Sample ID:	SB1A	SB18	SB1C	SBZA	SB2B	S82C
Factor:	1.000	1.000	1.000	3.000	1.000	1.000
Results in:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	03 B	048	05 8	068	07B	088
Matrix:	solid	solid	solid	solid	solid	solic
Acenaphthene	<1200	<1200	<1200	<3600	<1200	<1200
Acenaphthylene	<660	<660	<660	<2000	<660	<660
Anthrac ene	<660	<660	<660	<2000	<660	<660
Benzo(a)anthracene	38*	<8.7	<8.7	<26	<8.7	<8.7
Benzo(a)pyrene	39*	<15	<15	<45	<15	<15
Benzo(b)fluoranthene	44*	<12	<12	<36	<12	<12
Benzo(g,h,i)perylene	<51	<51	<51	<150	<51	<51
Benzo(k)fluoranthene	29*	<11	<11	<33	<11	<11
Chrysene	<100	<100	<100	<300	<100	<100
Dibenz(a,h)anthracene	<20	<20	<20	<60	<20	<20
Fluoranthene	<140	<140	<140	<420	<140	<140
Fluorene	<140	<140	<140	<420	<140	<140
Indeno(1,2,3-cd)pyrene	<29	<29	<29	<87	<29	<29
Naphthalene	<660	<660	<660	<2000	<660	<660
Phenanthrene	<660	<660	<660	<2000	<660	<660
Pyrene	<180	<180	<180	<540	<180	<180
Surrogate Recovery(%)			,			
2-Fluorobiphenyl	91	64	94	93	88	101
Control Limits: 33 to 153						
2-Fluorophenol	87	63	95	93	94	95
Control Limits: 20 to 158						
Nitrobenzene-d5	84	62	98	94	87	92
Control Limits: 21 to 159						
Phenol -d5	87	63	94	93	91	96
Control Limits: 27 to 154						
Terphenyl -d14.	₹ 9.	73	105	107	92	102
Control Limits: 0 to 223						
2,4,6-Tribromphenol	92	60	87	91	84	96
Control Limits: 0 to 179						

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

ERM - North Central

Method:SW8270-Illinois list (1)					
List:						
Sample ID:	SB 3A	SB 38	SB3C	SB4A	\$8 4B	S84C
Factor:	1.000	1.000	1.000	1.000	1.000	1.000
Results in:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	098	108	118	12B	13B	148
Matrix:	solid	solid	solid	solid	solid	solic
Acenaphthene	<1200	<1200	<1200	<1200	<1200	<1200
Acenaphthylene	<660	<660	<660	<660	<660	<660
<u>Anthracene</u>	<660	<660	<660	<660	<660	<660
Benzo(a)anthracene	13*	<8.7	<8.7	<8.7	<8.7	<8.7
Benzo(a)pyrene	<15	<15	<15	<15	<15	<15
Benzo(b)fluoranthene	13*	<12	<12	<12	<12	<12
Benzo(g,h,i)perylene	<51	<51	<51	<51	<51	<51
Benzo(k)fluoranthene	<11	<11	<11	<11	<11	<11
Chrysene	<100	<100	<100	<100	<100	<100
Dibenz(a,h)anthracene	<20	<20	<20	<20	<20	<20
Fluoranthene	<140	<140	<140	<140	<140	<140
Fluorene	<140	<140	<140	<140	<140	<140
Indeno(1,2,3-cd)pyrene	<29	<29	<29	<29	<29	<29
Naphthalene .	<660	<660	<660	<660	<660	<660
Phenanthrene	<660	<660	<660	<660	<660	<660
Ругене	<180	<180	<180	<180	<180	<180
Surrogate Recovery(%)						
2-Fluorobiphenyl	96	94	91	87	98	93
Control Limits: 33 to 153						•
2-Fluorophenol	83	96	93	81	95	93
Control Limits: 20 to 158						
Nitrobenzene-d5	87	93	92	79	89	89
Control Limits: 21 to 159						
Ph enoi-d 5	87	88	87	80	95	91
Control Limits: 27 to 154						
Terphenyl-d14	101	103	107	82	103	101
Control Limits: 0 to 223						
2,4,6-Tribromphenot	90	96	93	92	97	86
Control Limits: 0 to 179						

^{*} Est. result less than 5 times detection limit

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

Method:SW8270-Illinois list (1)	
List:		
Sample ID:	REAGENT BLANK	
Factor:	1.000	
Results in:	ug/k g	
	18 A	
Matrix:	solid	
Acenaphthene	<1200	
Acenaphthylene	<660	
Anthracene	<660	
Benzo(a)anthracene	<8.7	
Benzo(a)pyrene	<15	
Benzo(b)fluoranthene	<12	
Benzo(g,h,i)perylene	≺ 51	
Benzo(k)fluoranthene	<11	
Chrys ene	<100	
Dibenz(a,h)anthracene	<20	
Fluoranthene	<140	
Fluorene	<140	
Indeno(1,2,3-cd)pyrene	<29	
Naphthalene	<660	Dr
Phenanthrene	<660	RECEIVED ROCKFORD REGION
Pyrene	<180	STORD REGION
		NOV A
Surrogate Recovery(%)		NOV 0 1 1989
2-Fluorobiphenyl	87	Environmental Protection Agency, State of Illinois
Control Limits: 33 to 153		State Protection A
2-Fluorophenol	91	State of Illinois Agency
Control Limits: 20 to 158		
Nitrobenzene-d5	92	
Control Limits: 21 to 159		
Phenot -d5	92	
Control Limits: 27 to 154		
Terphenyl-d14	97	
Control Limits: 0 to 223		
2,4,6-Tribromphenol	81	
Control Limits: 0 to 179		

⁽¹⁾ For a detailed description of flags and technical terms in this report refer to Appendix A in this report.

^{(2) 4-}Methylphenol co-elutes with 3-methylphenol. The value reported is the combined total of the 2 compounds.

102 Wilmot Road • Suite 300 • Deerfield, Illinois 60015 ☎ (312) 940-7200

October 4, 1989

TOCKFORD REGION NOV 0 1 1989

Environmental Protection Agency
State of Illinois

Mr. Dennis Ahlberg Emergency Response Unit Illinois Evnironmental Protection Agency 2200 Churchill Road Springfield, IL 62794-9276

RE: Phase II Investigation Report Suntect Industries, Inc. Rockford, Illinois

Dear Mr. Ahlberg:

On behalf of Suntect Industries, Inc., enclosed is one copy of our report on the Phase II Investigation conducted at the plant.

Very truly yours,

ERM-NORTH CENTRAL, INC.

James E. Kane, P.E.

James E. Kane

Project Manger

ftt

Enclosure

42 18 1

PHASE II INVESTIGATION OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES

OCTOBER 3, 1989

PREPARED BY:

ENVIRONMENTAL RESOURCES MANAGEMENT-NORTH CENTRAL, INC. 102 WILMOT ROAD, SUITE 300 DEERFIELD, ILLINOIS 60015

PROJECT NO. 9059

TABLE OF CONTENTS

Section	<u>Title</u>	Page No
LIST OF	TABLES	
LIST OF	FIGURES	
1.0	INTRODUCTION	1
2.0	SOIL GAS SURVEY	2
	2.1 Survey Methodology 2.2 Survey Results	2 3
3.0	VERTICAL EXTENT OF CONTAMINATION	4
	3.1 Soil Boring Protocol3.2 Soil Screening and Analysis3.3 Ground Water Monitoring	4 5 10
4.0	SUMMARY AND CONCLUSIONS	11
5.0	RECOMMENDATIONS	12

LIST OF TABLES

Table No.	<u>Description</u>	Following Page No.
1	Soil Gas Survey Data	3
2	Soil Boring Field Screening Data	5
3	Analytical Data for Underground Tank Backfill Samples	6
4	Analytical Data for Soil Borings	7
5	Ground Water Analytical Data	10

LIST OF FIGURES

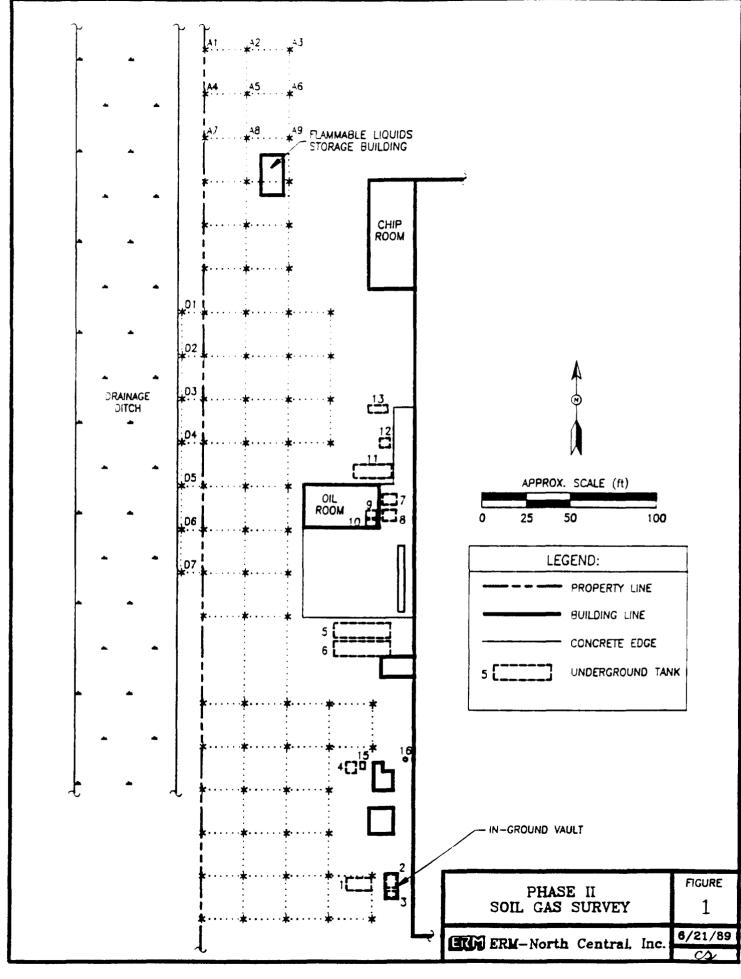
Figure No.	<u>Description</u>	Following Page No.
1	Soil Gas Survey	2
2	Soil Boring Locations	4
3	Proposed Ground Water Monitoring Well Locations	12

PHASE II INVESTIGATION OF UNDERGROUND STORAGE TANKS AT SUNTEC INDUSTRIES

1.0 INTRODUCTION

The Suntec Industries, Inc. (Suntec) facility located at 2210 Rockford. Illinois utilized 12 underground Harrison Avenue, storage tanks and two in-ground, vaulted storage tanks for storage of raw materials used in the manufacturing process, waste materials, and motor fuel. This facility currently utilizes two underground tanks for storage of fuel oil used in building space heating. These last two tanks were installed in 1977 to replace two older underground tanks taken out of service at that time. Suntec began a program to close all of the facility's underground storage tanks, except the fuel oil tanks, in January, 1989. initial steps of this program involved the removal of tank contents, tank cleaning, and sampling and analysis of soils in immediate vicinity. Examination of the analytical data obtained from these samples indicated that soils in the vicinity of several tanks contained volatile and semivolatile organic Based on the analytical data, a notification of compounds. potential release from these underground tanks was made to the Illinois Environmental Protection Agency (IEPA) by Suntec on February 9, 1989.

At the request of Suntec, Environmental Resources Management-North Central, Inc. (ERM) performed an initial investigation into the degree and extent of organic compounds in the vicinity of the tank. A report presenting the data obtained in this program was submitted to the IEPA on May 1, 1989. This investigation identified three areas of potential soil contamination in the northern portion of the underground tank area. The May report contained a work plan for a Phase II Investigation designed to obtain further information concerning the horizontal and vertical extent of migration in the identified areas. The Phase II Investigation Work Plan included an additional soil gas survey to indicate the horizontal extent of migration and a series of borings to define the vertical extent of migration in the identified areas.


The following sections of this report describe the Phase II Investigation methodology and present all survey data, conclusions and recommendations.

2.0 SOIL GAS SURVEY

The initial soil gas survey indicated that areas of potential soil contamination existed beyond the area investigated. The objective of the followup survey was to indicate the horizontal boundaries of soil contamination through the collection and screening of soil gas for volatile organics.

2.1 Survey Methodology

A 25 foot by 25 foot grid network tied to the western property line, beginning at the northern edge of the area previously tested, was used to locate the gas sampling points. A single line of sampling points, 25 feet apart, was used in the area between the drainage ditch running through adjacent property and Suntec's western property line. All gas sampling points used in the followup survey are shown in Figure 1. The initial survey sampling points are depicted in the figure as asterisks. The

followup survey sampling points are identified with alpha-numeric labels.

The soil gas procedure requires driving a perforated stainless steel probe into the soil and pulling a known quantity of soil vapor through a Teflon tube sampling train. An HNu photoionization detector is used to obtain field measurement of volatile organic concentrations in the soil gas.

2.2 Survey Results

All data recorded during the followup soil gas survey are presented in Table 1. Soil gas levels detected in the initial survey are presented in the May 1, 1989 report.

The soil gas survey were used as a screening technique to indicate if there had been horizontal migration through soils 10 feet or less below ground surface (bgs). Laboratory analysis of representative soil samples taken from the areas indicated by the soil gas surveys provides confirmatory data on the degree and extent of migration.

The table indicates that "hits" were recorded only at Sampling Locations A1, A8, and A9. The meter readings recorded at Locations A3 and D1 were judged to be anomalies, rather than indications of soil contamination, because of the relatively low meter reading (less than 2 Vppm) and the degree of separation from areas of recorded "hits". The meter reading at Location A1 was discounted because of the distance from any known potential source or "hit" area. The following conclusions can be drawn from the data:

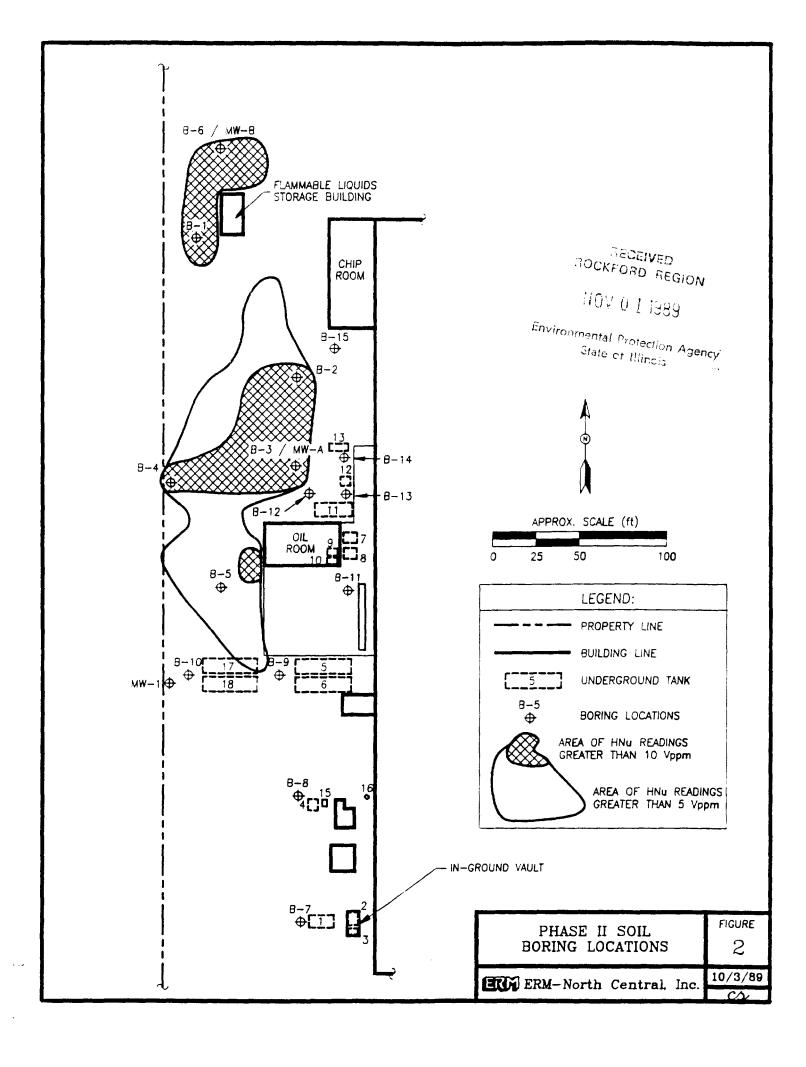
Soil contamination does not extend beyond the facility's western property line; and

TABLE 1

SOIL GAS SURVEY DATA MAY 17, 1989

Soil Gas Sampling Location	HNu Meter Reading, ppmv
A1 A2 A3 A4 A5 A6 A7 A8 A9 D1 D2 D3 D4 D5 D6 D7	12 0.0 1.7 0.0 0.0 0.0 0.0 91 9.6 1.3 0.0 0.0 0.0 0.0 0.0

o Soil contamination in the vicinity of the Flammable Liquid Storage Building is confined to an area within 25 feet of the northern and western building walls.


The followup soil gas survey, in combination with the initial survey, has identified two principal areas of concern: (1) within 25 feet of the northern and western walls of the Flammable Liquid Storage Building; and (2) a larger area extending from about the Oil Room to the Chip Room, bounded by the western property line (See Figure 2).

3.0 VERTICAL EXTENT OF MIGRATION

The vertical extent of migration was evaluated using a total of 15 soil borings. The information obtained in the two soil gas surveys was used to select the locations for the initial series of six borings (B-1 through B-6). The final series of nine borings were located to further characterize materials in the immediate vicinity of the underground tanks. The locations of all borings are shown in Figure 2.

3.1 Soil Boring Protocol

Soil samples were obtained from each of the initial six borings at 2.5 foot depth intervals and screened for volatile organics using an HNu photoionization detector (PID). The entire volume of soil contained in the split spoon sampler underwent meter screening. A composite soil sample of each depth interval was prepared, sealed and set aside for possible laboratory analysis. Composite samples representing the final boring depth at each location were submitted for laboratory analysis of VOC and isopropyl alcohol. Additionally, several composite samples were

submitted for analysis to quantify apparent migration indicated by elevated meter readings recorded during field screening.

The borings were advanced from ground surface to a depth where:

- Meter screening indicated the lack of measurable volatile organics, or
- 2. The saturated zone was encountered.

In two locations, field screening indicated that soil migration potentially extended to a saturated zone. These Borings, B-3 and B-6, were converted to Monitoring Wells MW-3 and MW-6. The final depth below ground surface of MW-6 was only 11 feet. The decision to install this well at a relatively shallow depth was made to prevent the creation of a conduit for materials to migrate to underlying soils.

The final nine borings were used to obtain representative samples of material in the immediate vicinity of the underground tanks at three discrete depths (5, 10 and 15 feet). All samples were screened for the presence of volatile organic compounds using a HNu PID and the method previously described. Soil sampled at each depth was submitted for laboratory analysis of volatile and semivolatile organic compounds.

3.2 Soil Screening and Analysis

Table 2 presents all field screening data obtained in the initial six borings. Complete boring logs and well installation logs prepared by an ERM geologist are presented in Appendix A. The elevated meter readings recorded at a depth of 7 to 13 feet in Borings B-3 and B-6 correspond to a layer of sandy silt between the more typical silty sands. A finer grained material like the silt layer would be less permeable and tend to retain a greater

TABLE 2
SOIL BORING FIELD SCREENING DATA
MAY 23, 1989

HNu Meter	Reading
-----------	---------

			Vr	pm		
Depth Interval (ft)	<u>B-1</u>	<u>B-2</u>	<u>B-3</u>	<u>B-4</u>	<u>B-5</u>	<u>B-6</u>
0.0 - 2.5 2.5 - 5.0 5.0 - 7.5 7.5 - 10.0 10.0 - 12.5 12.5 - 15.0 15.0 - 17.5 17.5 - 20.0 20.0 - 22.5 22.5 - 25.0 25.0 - 27.5 27.5 - 30.0 32.5 - 35.0 35.0 - 37.5 37.5 - 40.0	1.8 0.4 0.0	0.4 0.0 0.6 1.2* 2.1*	1.7 2.6 0.6 124 150 8.1 1.7 1.8 1.2 0.8 1.2 0.6 0.6 4.0*	0.0 0.0 0.1 0.0 0.0	0.4 0.0 0.2 0.6 0.0	0.6 1.2 18.6 62

Depth to ground water interface at B-3 was 37 feet and 7 feet at B-6.

Meter interference resulting from increased moisture content of soil. Readings most probably are a result of soil moisture.

portion of compounds migrating through the unsaturated zone than the sands found above and below this layer.

A total of seven composite soil samples from the initial six borings were submitted for laboratory analysis. These samples consisted of "bottom of the boring" samples taken from Borings B-1, B-2, B-4, B-5, and B-6; a sample taken from the 7.5 to 10interval in Boring B-3; and a sample taken from the 2.5 to 5-foot interval in Boring B-2. No detectable concentrations of volatile organic compounds were found in any of the soil samples submitted for laboratory analysis, however, the method detection limits achieved by the laboratory were 1 ppm or higher. As a result, a degree of uncertainty remains as to the extent and concentration of materials in the areas identified by the soil gas survey. It does appear, however, that any materials present are at sub-part-per-million concentration for gasoline components and organic solvents. The complete laboratory report covering these samples is presented in Appendix B.

Information characterizing soils in the immediate vicinity of the facility's underground storage tanks was obtained on two separate occasions.

The initial steps of Suntec's Program to close all underground tanks was conducted by Fehr-Graham & Associates and had included the collection of samples directly beneath the individual tanks. The presence of volatile and semivolatile organic compounds in several samples was the basis for Suntec making the notification of potential release to the IEPA on February 9, 1989. Table 3 contains the analytical data obtained from these samples and is presented for purposes of comparing data from the more recent nine borings.

As noted, the subsequent nine borings were intended to characterize materials in the immediate vicinity of the tanks.

TABLE 3

ANALYTICAL DATA FOR UNDERGROUND TANK BACKFILL SAMPLES

	Underground Storage Tank Number											
Volatile Organics	1	<u>4</u>	5	<u>6</u>	Z	<u>8</u>	2	<u>10</u>	11	<u>12</u>	14	<u>16</u>
Ethyl Benzene	<0.005	160	< 2	7.5	<2	< 5	<0.5	<0.5	< 5	<1	<0.005	<0.005
Tetrachloroethene	<0.005	<10	<2	<5	7.7	7.8	0.5	<0.5	<5	<1	<0.005	<0.005
Toluene	<0.005	170	<2	< 5	2.2	<5	<0.5	<0.5	<5	<1	<0.005	<0.005
1,1,1-Trichloroethane	<0.005	<10	5.9	<5	4	<5	1.2	<0.5	<5	<1	<0.005	<0.005
Trichloroethene	<0.005	<10	<2	<5	19	15	3.3	<0.5	<5	<1	<0.005	<0.005
Xylenes	<0.005	520	<2	49	4.6	9.3	<0.5	<0.5	34	<1	<0.005	<0.005
SemiVolatile Organics												
Benzo(a)anthracene	< 5	NA	< 5	6	<5	<250	<500	<200	13	9	<1	<50
Benzo(b)anthracene	<5	NA	<5	<5	<5	<250	<500	<200	8	6	<1	<50
Benzo(a)pyrene	<5	NA	< 5	<5	<5	<250	<500	<200	19	12	<1	<50
Chrysene	<5	NA	<5	<5	<5	<250	<500	<200	16	12	<1	<50
Dibenzo(a,h)anthracene	<5	NA	<5	9	< 5	<250	<500	<200	6	<5	<1	<50
Anthracene	<5	NA	<5	<5	< 5	<250	<500	<200	5	11	<1	<50
Benzo(k)fluoranthene	<5	NA	<5	< 5	<5	<250	<500	<200	8	6	<1	< 5
Benzo(ghi)perylene	<5	NA	<5	< 5	<5	<250	<500	<200	6	<5	<1	<50
Fluoranthene Cd	5	NA	7	8	<5	<250	<500	<200	26	24	<1	<50
Indeno(1,2,3-Cd)pyrene	<5	NA	<5	<5	<5	<250	<500	<200	6	< 5	<1	<50
Phenanthrene	< 5	NA	5	5	<5	<250	<500	<200	21	10	< 1	<50
Pyrene	<5	NA	7	12	<5	<250	<500	<200	21	18	<1	<50

All units are mg/kg.

NA - not analyzed.

The analytical data obtained from the samples taken in the final nine borings are presented in Table 4. The data are arranged so that the underground tank corresponding to each boring location is identified. The complete laboratory report covering these samples is presented in Appendix B. The following discussion compares the data contained in Tables 3 and 4 and draws conclusions based on this comparison.

The Fehr-Graham Sampling Program indicated that low levels of semivolatile compounds may exist in the vicinity of Tank No. 1. The second sampling program confirmed that low levels of semivolatile compounds may exist in the vicinity of Tank No. 1. According to Suntec personnel, in recent history, this tank has contained "white gas", a material not containing appreciable levels of semivolatile organic compounds. If semivolatile compounds are present, they may be a result of asphaltic coating on the tank.

The Fehr-Graham Program identified the presence of gasoline constituents under Tank No. 4. Historically, this tank has held gasoline. The second sampling program did not demonstrate the presence of the same components in the vicinity of Tank No. 4. While the high levels of toluene, ethyl benzene and xylene compounds found in the initial sample are consistent with soil contamination resulting from leakage or spillage in the vicinity of a gasoline storage tank, the second sampling indicates that lateral migration of contamination is very limited.

With regards to Tank Nos. 5 and 6, the Fehr-Graham Program recorded concentrations of volatile and semivolatile compounds that can be components of both fuel oil and asphaltic tank coatings. The second sampling identified relatively insignificant concentrations of semivolatile compounds in the vicinity of Tank Nos. 5 and 6 and no volatile compounds. A release of fuel oil from these tanks would most likely have

TABLE 4

ANALYTICAL DATA FOR SOIL BORINGS

Boring Number/Tank Number

	B-7/1	B-8/4	B-9/5,6	B-10/17,18	B-11/7,8,9,10	B12/11	B-13/12	8-14/13	B-15/Chip Room
Sample Depth (ft)	4-6 9-11 14-16	4-6 9-11 14-16	<u> 4-6 9-11 14-16</u>	4-6 9-11 14-16	4-6 9-11 14-16	4-6 9-11 14-16	4.5-5.5 9.5-10.5	4-6 9-11 14-16	4-6 9-11 14-16
	1	1				i	i	l	1
Volatile Organics	1	1	1	1	1	ĺ	ĺ		1
	!		[!
Benzene	!		į		*	* *			Į.
Ethyl Benzene	!	Ţ.	[*	*	ļ		Į.
Toluene	<u> </u>	!			*	*		*	ţ
Xylenes	1	I	!		8000	1100 6600	22000 9800	9000 3200	!
Methylene Chloride	12 11 12	11	9.7						1
Methyl Ethyl Ketone	1	1	1				(1	1
Dichlorodiflouoromethane	35	10	8.9	11 18	3300	1	!		1
Trichlorofluoramethane		1	1	12		1	1		1
1,1,1-Trichloroethane	1	1	1	1	62000	54 1400	1	1	1
Trichloroethene	1	1	1	1	38000	1600	1		1
Tetrachloroethene	}	1	1	1	25000	280	İ	1500	
		i	1	1	İ	İ	i	1	1
	1	1	1	1	†	1	1	1	1
Semi-Volatile Organics	1	1	1	1	1	1	1	1]
	1	1	1	}		l	1	}	1
Benzo(a)anthracene	*	1	1 *	1	54 61	140 70 *	150 *	*	+
Benzo(a)pyrene			1	!	•	* *	*	1	*
Benzo(b)fluoranthane	*	1] *	1	*	* *	 		*
Benzo(g,h,i)perylene		1	1	ļ	1	l	1		1
Benzo(k)fluoranthene	*	1	İ	l		* *			1 *
Fluoranthene	1	1	1	ļ	1	* *	1		1
Fluorene	İ	İ	i	l	*	i	1		1
Indeno(1,2,3-Cd)pyrene	1	İ	1		1	1	l	ļ	1
Napthalene	İ	İ	Ì		*	ļ *	! *		1
Phenanthrene	İ	İ	1	!	*	l	ſ	1	1
Pyrrene	1	Ì	Ì	İ	*	* *	İ	1	1

All units are ug/kg, blanks indicate less than method detection limit.

^{*}Estimated result. Result less than 5 times detection limit.

resulted in soil semivolatile concentrations in excess of those recorded in the sampling programs. According to employees who have worked at the site for the past two decades, waste Stoddard Solvent, a mineral spirits-type solvent containing non-halogenated compounds, had been added to fuel oil contained in Tank Nos. 5 and 6 for burning in the facility's boilers. This practice was discontinued prior to the effective date of regulations prohibiting waste solvent burning for space heating. Therefore, the data does not support the conclusion that a release of fuel oil occurred from these tanks.

The Fehr-Graham Sampling Program did not include the active fuel oil storage tanks, Tank Nos. 17 and 18, because Suntec was not considering closure of these tanks. Suntec is now considering closure. The data obtained from the second program indicates that no volatile or semivolatile compounds are present above detection levels of 5 ppb in the vicinity of these tanks.

The Fehr-Graham Sampling Program indicated the presence of chlorinated and non-chlorinated volatile compounds in the area containing Tank Nos. 7, 8, 9 and 10. These tanks were used to store machining oil for use in the manufacturing process. The second sampling program confirmed the presence of these volatile compounds. Chlorinated and nonchlorinated volatile organics are not known to be components of the machining oils used at Suntec. A release of machining oils from these tanks would most likely have resulted in soil semivolatile concentrations in excess of those recorded in the sampling programs.

A program was implemented in 1984 to remove soils in the area immediately south of the Oil Room contaminated by housekeeping-type surface spills from scrap chip roll-off boxes. Data developed during this cleanup indicated that the same chlorinated and nonchlorinated volatile organics were present at depth in levels similar to those recorded in the second sampling program.

ERM has not developed information in this investigation to determine if the existing presence of volatile compounds in related to the 1984 program.

The available data does not support the conclusion that a release occurred from Tank Nos. 7, 8, 9, and 10.

The Fehr-Graham Sampling Program indicated the presence of xylene in the vicinity of Tank Nos. 11 and 12. The second sampling program confirmed that xylene was present in the vicinity of these tanks. According to Suntec personnel, Tank No. 11 had been Tank No. 12 had been used used to store fresh Stoddard Solvent. to store waste Stoddard Solvent. Suntec personnel indicated that the storage of waste solvent in this tank was discontinued prior to the effective date of regulations prohibiting storage of this material in such tanks. Waste solvent was poured into Tank No. 12 from small, portable containers. Fehr-Graham's Investigation and Report indicated that the area immediately surrounding the tank fill connection was heavily stained. Examination of the data obtained from Boring B-13 of the second program (see Table 4) indicates that the concentration of xylene decreases with depth below ground surface. A contaminant profile such as this, would be consistent with a surface release resulting overfilling/ spillage rather than a tank release. Since chlorinated volatile organics are not components of Stoddard Solvent, their presence in the nearby area are not indicative of a tank release.

Tank No. 13 reportedly was used to store isopropyl alcohol. The Fehr-Graham sampling limited sample analysis to isopropyl alcohol. The second sampling program identified significant concentrations of xylenes, and at depth, tetrachloroethene. There is no evidence that materials stored in this tank had these compounds as constituents.

The second round of sampling included a Boring (B-15) located immediately south of the Chip Room to evaluate the potential for chip handling activities as a source of soil contamination. Except for insignificant levels of four semivolatile compounds, no contaminants were identified in these samples. Therefore, the potential for Chip Room activities contributing to soil contamination otherwise identified at this facility is negligeable.

3.3 Ground Water Monitoring

Monitoring Well MW-A was developed and sampled after installation. Monitoring Well MW-B was bailed dry during development, and no water was present for sampling. Water was present in Monitoring Well MW-A at a depth of 37 feet bgs. The shallow depth (7 feet bgs) of water in Monitoring Well MW-B coupled with the lack of well recharge indicates that this well was completed in a perched zone of saturation, rather than a continuous ground water interface.

A sample of ground water obtained from MW-A was submitted for laboratory analysis of volatile compounds and isopropyl alcohol. The analytical data obtained from this sample are summarized in Table 5. The complete laboratory analytical report is given in Appendix B. Table 5 presents concentrations for only those compounds present above the method detection limits. laboratory testing indicated that chlorinated solvents, primarily trichloroethene (TCE) and its related breakdown products, were present in the ground water sample. No additional ground water sampling from new or existing monitoring wells was performed as part of the Phase II Investigation, but further ground water testing is recommended. Ground water quality data obtained during the 1984 cleanup activities, however, documented that these compounds were present in ground water entering the

TABLE 5 GROUND WATER ANALYTICAL DATA MAY 23, 1989

<u>Parameter</u>	Concentration, ug/l
Chloroform	2.8
1,1-Dichloroethane	143
1,1-Dichloroethene	1.6
cis-1.2-Dichloroethene	318
trans-1,2-Dichlorothene	2.6
Tetrachloroethene	62
Trichloroethene	118

Harrison Avenue facility, at the east side, as well as in ground water near to the location of MW-A (MW-1 on Figure 2).

As part of the final series of borings described in Section 3.2, ERM obtained a sample of liquid remaining in Tank No. 11. assumed that this liquid is wash water not completely removed during tank cleaning. Laboratory analysis of this measured 1500 ug/1 xylenes and 670 ug/1 methylene chloride. Fehr-Graham Report covering the initial tank closure activities stated that a sludge-like material was present in Tank No. 11 at the time of cleaning. This sludge was removed, analyzed and disposed as an ignitable hazardous waste. The entire volume of sludge removed from the tank was less than 55 gallons. presence of a liquid containing xylene in this tank is consistent with the earlier sludge removal and tank cleaning, as well as information regarding the tank.

4.0 SUMMARY AND CONCLUSIONS

The Phase II Investigation used a followup soil gas survey and a total of 15 borings to determine the horizontal and vertical extent of soil migration in the area of the facility's underground storage tanks.

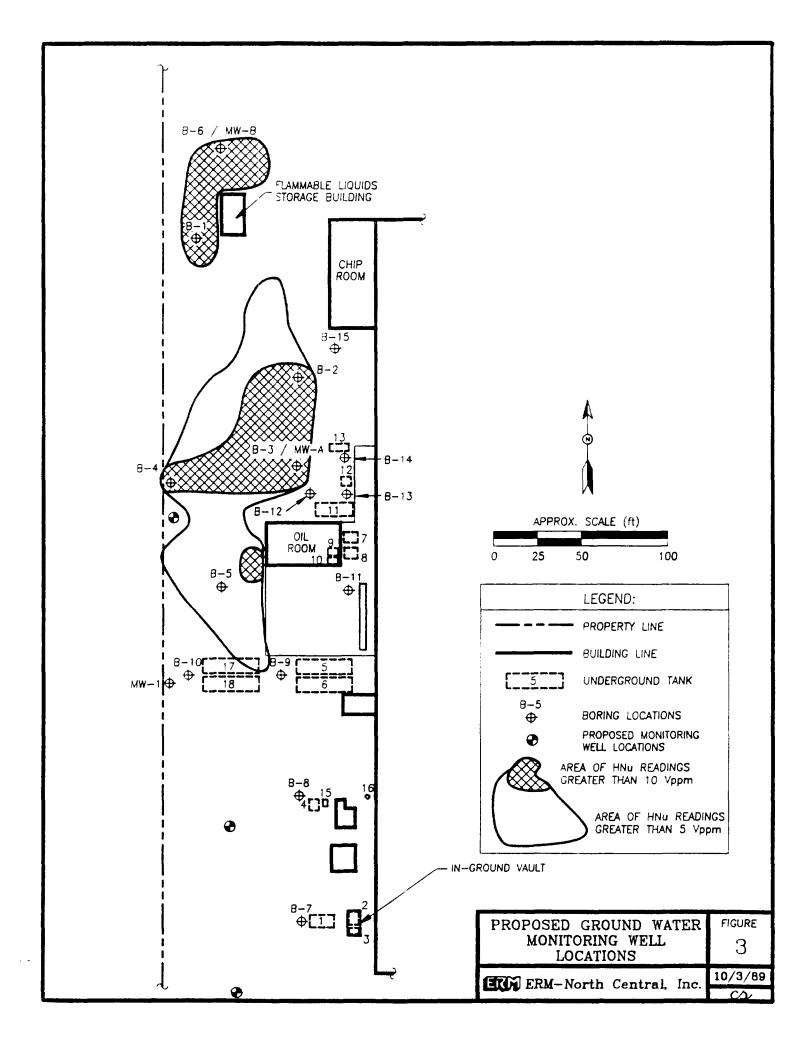
The initial and followup soil gas surveys identified the horizontal boundaries of two principal areas of concern: (1) an area extending 25 feet radially from the Flammable Liquid Storage Building's northern and western walls; and (2) a larger area extending from approximately the Oil Room to the Chip Room, bounded by the western property line and the main facility building.

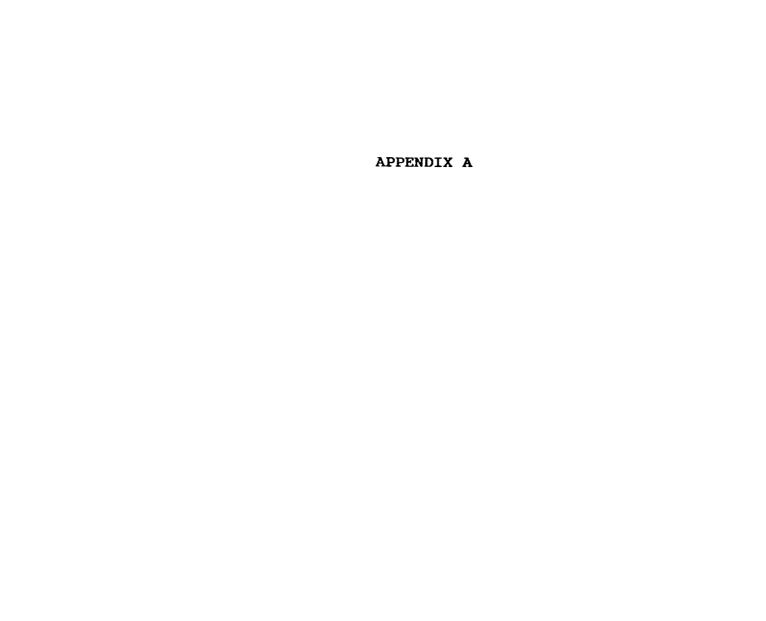
Laboratory analysis of soil samples obtained from a series of soil borings located in these areas indicated that any materials

present are at a sub-part-per-million concentration for gasoline components and organic solvents.

Two soil sampling programs provided more complete information on contaminant levels in the immediate vicinity of the individual underground tanks. Based on this information, a release most However, no significant likely occurred at Tank No. 4. horizontal migration appeared to have occurred. The has information also indicates that subsurface contamination exists in the vicinity of Tank Nos. 5, 6, 7, 8, 9, 10, 11, 12, and 13. The presence of xylene around Tank Nos. 11, 12 and 13, as well as a lesser amount under Tank No. 6 may have been caused by Stoddard Solvent transfer. There is no indication any of the tanks around which chlorinated solvents were found, particulary Tank Nos. 7, 8, 9 and 10, ever held chlorinated solvents and the data does not otherwise support a conclusion that a release has occurred from these tanks. A ground water sample obtained from Monitoring Well MW-A contained trichloroethene and its breakdown products.

5.0 RECOMMENDATIONS


ERM recommends that a three-phased program be used to complete the closure of the facility's underground storage tanks. These phases are: (1) a ground water investigation; (2) an investigation of potential soil remediation techniques; and (3) tank removal or closure in-place.


The ground water investigation will utilize all existing wells to develop data on the characteristics of site ground water quality and flow direction. Information obtained in this investigation will permit the assessment of the degree of impact, if any, that releases from facility underground tanks have had on local ground water quality. Three monitoring wells were installed in 1984, two along the east end and one along the west

A fourth monitoring well was installed as part of this end. investigation. Three additional monitoring wells will installed in the locations shown in Figure 3 to characterize ground water quality at the facility. Information on site ground water quality, an assessment of any impacts and recommendations for additional actions will be presented in an Investigation Report. It is expected that the three additional monitoring wells can be installed and developed by October 27th. Sampling of all monitoring wells should be completed by November Laboratory analysis for volatile and semivolatile organic compounds should be completed by November 30th, with submittal of the Investigation Report by December 15th.

The soil remediation investigation will examine potential methods for "source elimination", in-situ remediation of contaminated Soil ventilation appears to be one potential "source elimination" method because of the concentration and type of ERM will prepare a Remedial Action Work compounds identified. selected presenting design information for the remediation soil method and the proposed cleanup incorporating IEPA's most recent guidelines, for submission to IEPA at the completion of this investigation. It is expected that the soil remediation investigation and preparation of the Remedial Action Work Plan can be completed by November 30th. Implementation of the proposed remedy will follow approval of the Work Plan by IEPA.

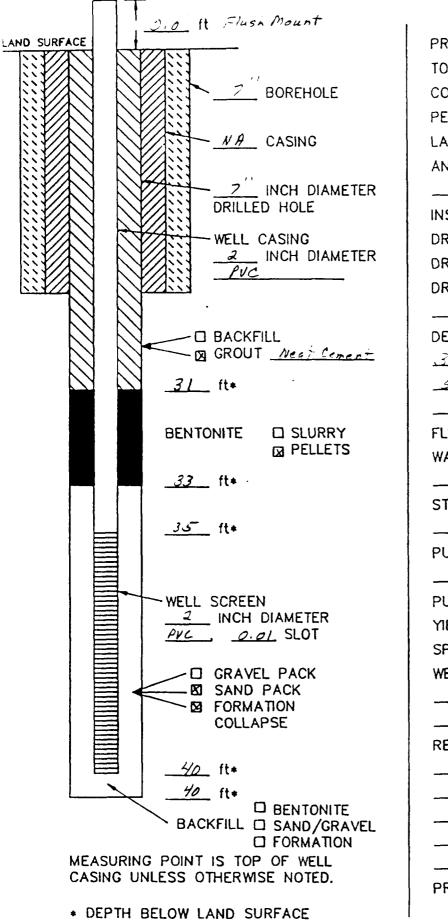
Tank removal and final closure activities will be implemented as soon as possible. The determination as to which tanks will be excavated or closed in-place will be made based on all available information. The appropriate permits will be obtained from the Illinois State Fire Marshal's Office prior to closure.

	ER M	-NORTH	CENTR	RAL, I	INC. DRILLING LOG
					ec cunter
	Loca	ation .	Ro	eck	Ford w.O.Number <u>7059</u>
	Bore	ehole i	Number	·	8-1 Total Depth 7.5 Diameter 7"
	Dri	lling	Compar	ry <u>F</u>	ox Prilling Drilling Method Hollow Stem Auger
	Samp	oling!	Method	لركند لا	olit Span Log By MER Date Drilled 5-23-29
		,	,		
					DESCRIPTION/SOIL CLASSIFICATION
ОЕРТН	Ŧ	BL OWS	HNL (Vppm)	aple aber	Color, Texture, Structures
8		at .	FS	ÖŽ	
1 4		70	ļ		Asphalt & Basecoarse
+		8	1.8	A	Fill, SM- sand, Silty, gravelly, brown, moist, moderately Dense 25' Lenses of Black Silt
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		В	SP - Sand was slightly silty brown, very moist, Loose
5-		2			The state of the s
		- a /	0.0		
1 +		2	0.0		5M - Sand, very silty, dark brown, very moist, Loose
		-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1.0		_			Bettom of Boring
10+	-				
	_				
	_				
1 1		_			
1 +		_			
1 +		_			
1 +					
+					
+		_			
1 +	<u> </u>			•	
1 +	_				
				}	
1 1		_			
		_			
1 +	-	<u> </u>			
+		_			
+					
+		-			
1 +		_			
		_			

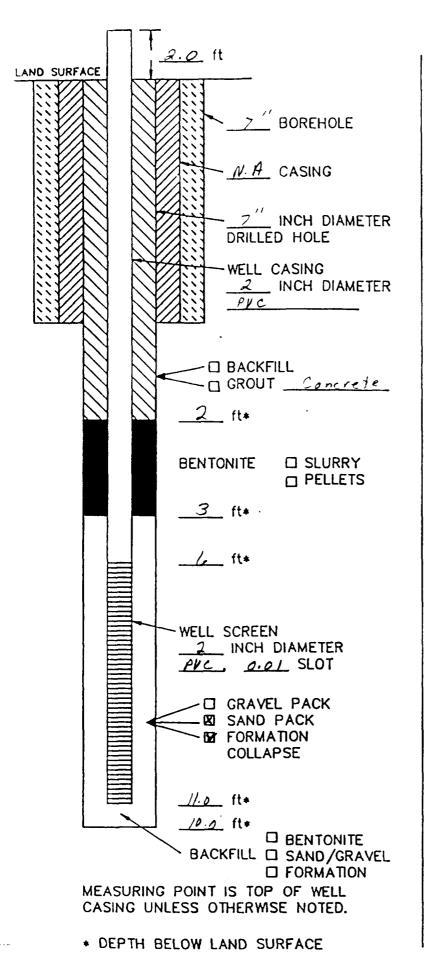
	ERM	-NORTH	CENTE	RAL, I	INC. DRILLING LOG
	Pro.	ject _	Su	7	ec owner <u>Suntec</u>
					Ford W.O.Number 9059
	Bare	enole	Number	r	\mathcal{B}^{-2} Total Depth 12.5 Diameter 7
	Dri. Samp	lling bling	Compar Method	ny _ <u>≤</u> ⊒ <u>≤</u> ↓	Orilling Drilling Method Hellow Stem Auger Olit Spoon Log By MER Date Drilled 5-23-29 Date Drilled 5-25-29
CEPTH	H.	BLOWS	HNU (wddn)	Sample	DESCRIPTION/SOIL CLASSIFICATION Color, Texture, Structures
					Asphalt & Base coarse
		100	0.4	A	SP - Sand, Silty brown, very moist, Loose to moderally Dense, Lenses of very lilty sand
		2243	0.0	В	Dense, Lenses 31 DELY 1
3		14 23	0.6	C	
		21			<u>8.5</u>
10		7 12 17	1.2	D	SM-ML — Alternating lenses of Sandys, It and S. Ity Sond, light brown, moist, stiff
	_	1214	2.1*	E	
-	-				Bottom of Boring
15	. —				
		_			
		_			
		_			
		-			
-					* HNU readings appeared To be due to moisture
+		<u> </u>			in the soil
+		_ _			
+		-			

	ERM	I-NORTH	CENTE	RAL,	INC. DRILLING LOG						
					ec Owner Suntec						
	Location Rockford W.O. Number: 9059										
	Well Number $Mw-3/B-3$ Total Depth $40'$ Diameter $7''$										
	Sur	face E	levati	lon	No Datum Water Level: Initial 37 24-Hrs						
					Fox Orilling Drilling Method Hollow Stem Anger						
					plit Spoon Log By MER Date Drilled 5-24-89						
	34	7 22g		<u> </u>							
T		8		e r	DESCRIPTION/SOIL CLASSIFICATION						
DEP TH	- - <u>-</u> -	BLOWS	(Vppm)	Samp	Color, Texture, Structures						
			-		Aspholt & Base coarse						
_		-			1/25 1/25 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3						
		7	1.7	A	ML - Silt, Sandy, Black, Stiff Slightly moist						
-		-4 3			SP-Sand, Slightly Silty, Reddish Brown, moist, Loose to						
-		3	2.6	$ \mathcal{B} $	Brown moderately dense						
5	 -	3 4	 		Joseph To Fine d						
		8	0.6	c							
		16	-								
		7	124	D	9.5						
10		7	ļ	~	SM-ML - Alternating lenses of Silty Sand and Sandy Silt, Gray,						
-		111	میں	سر ا	moist, Stiff, dieseloil Smell						
4	 -	14	150	E							
+		4			13.5						
	_ '-	15	8.1	F	SP- Sand, very slightly silty, Light Brown, Slightly morst,						
ا ا		10			fine to medium grain size						
		20	1.7	G							
		10	┼								
		13	1.8	H							
20		24	ļ	''							
		12	, ,	-							
		23	1.2	I							
-		100									
		19	0.8	3	24.6						
25 –		10			ML-SM - Lenses of Silt and Silty Sand, Light brown, moist towet, Stiff, 26:0 3" Saturated zone from 25.7" + 26"						

SP - Sand, very slightly silty inplaces light brown, slightly moist, dense to very dense, fine to medium grain size


1.2 K 26.0

ERH-NORTH CENTRAL,	RAL, INC. DRILLING LOG
Project	Rockford W.O.Number 2059
ğ	B-4 Total Depth 12.5 Diameter 7"
Drilling Company Sampling Method	d Split Spoon Log By MER Date Drilled 5-54-89
DEPTH pH BLOWS HNU (Vppm	Sampl Numbe
	E Basecoarse
2 0.0	Silt and Clay lenses, Jery Sandy, Black, Moist, Saf
	SP- Sand, brown
3 0.0	To median yie
o com	
0.0	0
	77
1600	1-
 	12.5 At A Acres
15++	
 	
	
 	
+	
-	
-	
-	
- - - -	


	ERM-	-NORTH	CENTR	RAL,	INC. DRILLING LOC
					c owner Suntec
	Loca	ation	P	001	K Ford W.O. Number 9059
	Bore	ehole i	Number	·	3-5 Total Depth /2.5 Diameter 7"
	Dri	lling (Compar	אר <u>י</u>	Ox Orilling Drilling Method Hollow Stem Auger
	Samp	aling #	Method	رک_ د	plit Spoon Log By MER Date Drilled 5-24-89
					·
=		র্	Ê	ole Ser	DESCRIPTION/SOIL CLASSIFICATION
DEP TH	五	BL.OWS	(Wppm)	S S	Color, Texture, Structures
					Asphalt & Basecoarse
		3	0.4	A	15:11, SM-CL - Lenses of Sity Sand and Sandy Clay, Black, Moist, firm
1 +		7			
1 +			0.0	β	
5-		3			fine to medium grainsize
1 +		- 4 -5	0.2	(
		<u>-</u> 2,			
1		14		ח	
1. +		16	2.6	D	
10		7-			11.0
		100	0.0	E	11.0 11.5' ML-5M - Lenses of Silty Sandon's Sundy Silt, Light brown, moist, stiff SP-Sand, Light Brown, moist, moderatly dense
	-	13			SP-Sand, Light Brown, maist, moderatly dense
					Bottom of Boring
15		_			
-	- 4				
-					
-					
+					
+			İ		
+-					
+		_			
+		-			RECEIVED
<u> </u>		<u> </u>			MOTIKEORD REGION
					NOV 0 1 1989
					Environmental Protection Agency
					State of Illinois
-		_			
-	- 4				
] +		-			
!					

DRILLING LOG

	Proj	ect _	<u>Su</u>	nT	ec owner <u>Suntec</u>
	Loca	tion _	R	ac Å	ford W.O. Number: 9059
	Well	Numbe	•r	M	N-6/6-6 Total Depth $11'$ Diameter $2''$
					No Datam Water Level: Initial <u>S. 0</u> 24-Hrs
					Length 5 Slot Size 2.01
					Length & Elevation No Datum Type PUC
					OX Drilling Drilling Method Hollow Stem Auger
	Samp	ling M	ethod	پد ا	Olit Spoon Log By MER Date Orilled 5-25-89
_			2	9 1	DESCRIPTION/SOIL CLASSIFICATION
DEPTH	£	BLOWS	(Mpdy)	Sampl	Color, Texture, Structures
					Top Soil - Silt + Roots
		一ŷ	0.6	۵	ML-CL - Lenses of Siltandely, very sondy, Black to
1 -	- -	<u> </u>	0.0	//	dork brown, moist, Stiff
-		ار کار اس کار			
		-8	1.2	В	
5+		12 2- 5-	-	-	water - small sand stringers
<u> </u>		_5 4	18.6	c	\(\int_{\infty}\)
-		-4 ح			SP- Sand, Gray, very moist to wet, Loose to Moderathy dense
-		3			fine to medium grain size
-		_ <u>,</u>	62	D	9.5' ML- Silt, very sandy, grayish green, wet, firm to stiff
10		4			ML - bilt, very sandy, grayish green, wet, firm to stiff
					100'
		_			Bottom of Boring
1 +		_			
		_			
	-				
	_]				
		_			
	_]	_			
	_ 7	_			
	_	_			
		_			
		_			

PROJECT Santes WELL MW-3
TOWN/CITY ROCK ford
COUNTYSTATE
PERMIT NO.
LAND-SURFACE ELEVATION
AND DATUM None feet SURVEYE
C ESTIMATE
INSTALLATION DATE(S) 5-24-89
DRILLING METHOD Hollow Stom Auger
DRILLING CONTRACTOR Fix Drilling
DRILLING FLUID None
DEVELOPMENT TECHNIQUE(S) AND DATE(S)
3 Volumes Romoved 1. Saallons
5-25-22
FLUID LOSS DURING DRILLING NA GA
WATER REMOVED DURING DEVELOPMENT
1.5G,
STATIC DEPTH TO WATER
FEET BELOW M.
PUMPING DEPTH TO WATER
FEET BELOW M.
PUMPING DURATION N. A HOURS
YIELD N. A. gpm DATE
SPECIFIC CAPACITY N.A gpm/ft
WELL PURPOSE Manitor & Sampling We
REMARKS
PREPARED BY MER

PROJECT <u>Suntec</u> WELL <u>MW-6</u>
PROJECT <u>Suntec</u> WELL <u>MW-6</u> TOWN/CITY <u>Rack Food</u>
COUNTYSTATE Things
PERMIT NO
LAND-SURFACE ELEVATION
AND DATUM None feet SURVEYE
D ESTIMAT
INSTALLATION DATE(S) _5-25-89
DRILLING METHOD Hollow Stem Anger
DRILLING CONTRACTOR Fix Drilling
DRILLING FLUID None
DEVELOPMENT TECHNIQUE(S) AND DATE(S) N. A
FLUID LOSS DURING DRILLING None G
WATER REMOVED DURING DEVELOPMENT
STATIC DEPTH TO WATER
No Datum FEET BELOW M.
PUMPING DEPTH TO WATER
10. A FEET BELOW M.
PUMPING DURATION N.A. HOURS
YIELD N.A. gpm DATE
SPECIFIC CAPACITY N.A. gpm/ft
WELL PURPOSE Monitor & Sompling well
in the event enough water british
REMARKS well is deeper than Boris
because the driller pushed the
well point into the sandy silt
1.0'.
PREPARED BY MER

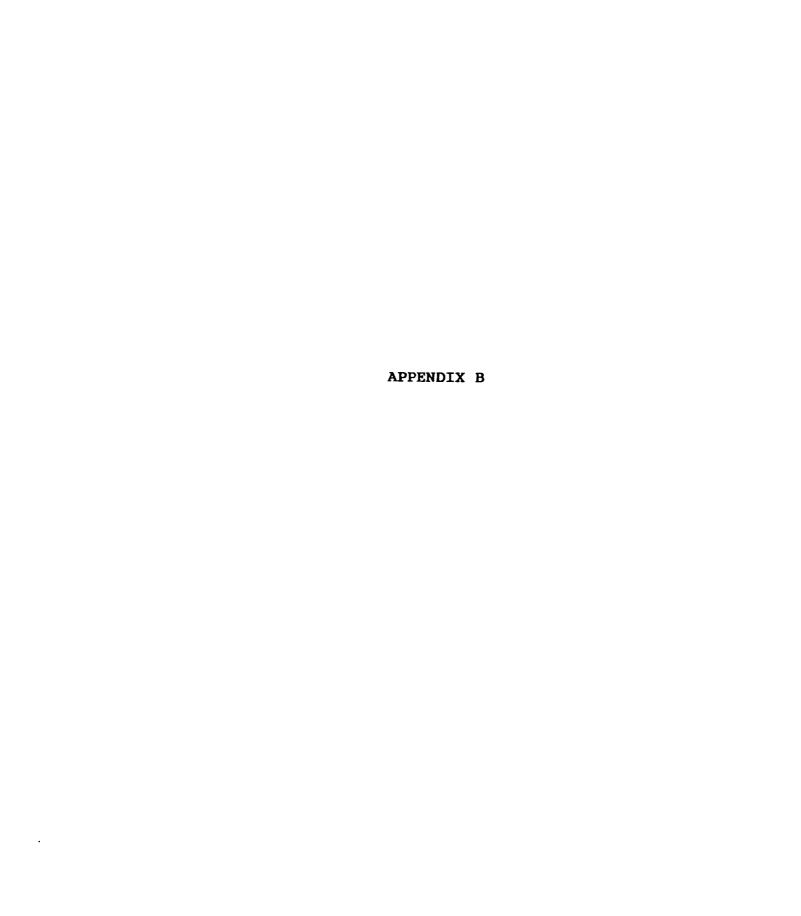
Project Surfec Tirbstees Owner Surfec Tirbstees Location Rockfield, 14 W.O.Number 9155 JK					
Porenois Number SB1 Total Depth 16.0' Diameter 512' Drilling Company Ramber Deiling Orilling Method 314' I.D. H5-August Sampling Method 2"x2' Spl.t Sampling By D.P. Edward Date Orilled 7-24-89					
Sample Recorde Recorde Hau (Vppm) Sample					
/	Deat beaux, pocale scated clayer for sand w/ Rootlets, moist, no odor (Topsal) Light brain, poorly souted, V. lase, lu-med sand with				
3 — —	No odor, moist (F.11)				
4 1 2 0 0 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.8' Light beown mad. well satel love vf - for said				
7	bedding, no odoe, day.				
9 6 3	Light bear, mod. well scated loose, silty vf-for sand, No bedding, no oclar, moist.				
10 2 4 0 8 85					
12 13 13 14 15 15 15 15 15 15 15	Light bears well softed, med derse, med for said w/ tence of sand, hor. laminated, oce, re Ox striving, day.				
14 14 0 25 V	Light beause well souted, dense silt, one. Fock stain wet.				
16 32 85	Light beaux, well speted, dense, med-for sand u/ te. vi sand, hor. laminated, occ. FeOx stain, moist. End of Boring 16.0'				

	erh -Nort i	H CEN	TRAL,	
	oro ject	ىيىك	tec	Intesteres owner Sunter Industries
	_ocation	\mathcal{L}	ock t	wed IL 4.0. Number 9155 JK
	Soreno le	NUMO	er _	582 *otal Depth 16.0 * Diameter 51/2 *
				Aimorda Dailine; Orilling method 34" I.D. HS-Auger
	Sampling	Meth	00 <u>2</u>	"x2" Spit Samuelog By D.P. Edward Cate Orilled 7-24-89
2.	18			DESCRIPTION/SOIL CLASSIFICATION
DEPTH	BE OWS	2 5	Sample	Color, Texture, Structures
~ ~	 	-	- 101 2	
	+			Asphalt
/ -	+			09' Light bacon, posely souted, for sandy force genuel, clay
2 —				DARK brown, poorly sorted, clay w/ ir. said & grave!
	+			No bedding moist.
3 +	-			Reddish beaux, well seeted, losse, for sand, No bedding,
, +-	+			No coder, moist.
9	4	1	1/2	
	4	0	112	
3 <u> </u>	<u></u>	0	4	
4	2		5824	244/
* _	+			Reddish beown, mad willscated, lose, for-need sand, we hedding,
7 +				No oclae, moist.
-	+			
5-	+			Light bever, Medium dense, well souted silt, hor, l'Aminated
+	 -			NU ochor SATURATECH For I All II II II II O
9	10		10	SAND, has laminated, occ. FE OX stain, moist.
1	19		13	
10 7	25	0.0	8	Light beour, year close well antil Com
	27		SBi	Light beour, user dorse, well social, for sand u/ tence med. sand, occ. FEOX stair, moist.
"				יייין דוטואי,
12	 -			
+ .	+			
13	+			Light beaux, well societal, dense, silt, hocizontally laminated, No oclor, moist.
+	+			I'V UVUK, PROISI,
14	19		8	
	20	c	7	Light begur, well scetal, depse for sound, hoe. Imminated, NO
~ * -	28	0	326	odok, day, this silt bed, moist.
16	32		べ	Light beaux, well socked, days silt, have law, No ador, saturated.
+ -	+			End of Boxing 16.0'

Project Surfec Tirlustries Owner Surfec Tirlustries Location Rock ford IL 4.0. Number 9/55 JK Borenois Number 583 Total Depth 16.0 Diameter 5/2 Drilling Company Raincords Drilling Orilling Method 3'4" I.D. HS-August Sampling Method 2"x2" Split Sampling By D.P. Edwark Date Orilled 7-24-89						
Samole	Remer	H.C.	(Vppm)	CESCRIPTION/SOIL CLASSIFICATION Color, Texture, Structures		
/ -				Light brown, poorly socied, fu-ce sand w/ tence cr. gravel, No odor, dry (Aggregate Base)		
3 +				Dack blown powery sorted clayer for Hed SAIND, 100 odok, No bedding, moist (backfill).		
5	3		5834 1220	Light beaut, Had well sated, losse, for sand u/ teace clay i for grave, us bedding, no adar, moist (backfill)		
9 10 11	13 13 29	000	5833 /355	Light beown, well sorted, nechum close, for & vf sand, horizontal to low Angle stratification alternating for sand And vf sand laminae, occ. FEOX stain, No odor, moist.		
12 13 14 15	13	0.0		Light beown, deuse, interbedded silt u/ trace of sand Amil fu-of, sand, well socied by laminate, horizontally laminated, No oder, wet silt, moist sand. Light beown well socied deuse for sand horizontally		
15	3,	3	583	Light browp, well sorted, dinse, for sand, horizantally laminated, 100 odor, dry. End of Boring 16.0'		

٧.

	erh -no rti			
				I stusteres Owner Suntec Industries
_	.ocation	Ko	xik f	Find. IL W.O. Number 9155 JK
=	ioreno le	Numbe	<u></u>	584 Total Depth 16.0 Diameter 51/2
١	rilling	Compa	INY <u>^</u> - 2	"x2' Solt Saw Log By D.P. Edwark Date Orilled 7-24-89
	amo11ng	Metro	10 <u>C</u>	x2 3pt January Date Utilieu 1 21 31
= 190	2 / E	1	- 5	DESCRIPTION/SOIL CLASSIFICATION
Sample	R OWS	7 å	Sample	
	1			0.3' Asphalt
/ -				Light beaux, pourly sorted, fu-cr sand w/ some clay and trace cr. gravel, no odor, dry (Aggregate Base)
3 📘				DARK brown, power sorted, formed sandy clay w/ trace cr. gravel, no oder, moist (fill)
4	8	-	2441	Light brown, well sorted, medium classe, for sand, No bedding, NO oclose (backfill)
6	18	Ö	83411	
7 -	+			
8	<u> </u>			Some silt, hoe. laminated, oce. FEOX stain, no odoe, moist.
1	1/		64,	
10 10	20 25 32	0,0	5843 14	Light beown, well socted, dense, for savel, hore. laminated, No odoe, day.
"	-		-	The business, orange,
12 -	+			
/3 -				Lt. beown, 14Ed. dense, well socied med, sand interbedded w/ mod. well society silt w/ tr. vf sand, hor. familiated, occ. Fo Ox string no odor, wet silt, day sand.
14	10	 	8	occ. Fo Ox stain No odor, wet silt, day said.
15 37	15	0.0	3rc 15	
16	28		3	
+ -	+			End of Boling 16.0'


Project Surfec Tixhustries Owner Surfec Tixhustries Location Rock ford IL W.D. Number 9155. TK						
Borenole Number 5/35 Total Depth 15.0' Diameter 3"						
	Drilling	Compa	iny <u>d</u>	FPM-N.C. Orilling Method 3 Harry Auged		
	Sampling	Metho	oa3	" Hard Augel Log By D. P. Edwards Date Orilled 7-25-89		
-		1 2	2 5	DESCRIPTION/SOIL CLASSIFICATION		
ОЕРТН	Fg 80	(MOON)	Samp	Color, Texture, Structures		
		-	†	Reinforced Concrete		
/ -				Yellowish beown pooch scretch, fu-er sand w/ some		
2 -	<u></u>			(Aggregate Base).		
-	-			DARK DROWN, poorly sorted NF-11Ed. SAINT W/ ta. CR. SAINT & CR. GRAVEL, STRONG SOLVENT whole, moist.		
3 +	_			SAIN F ER GRAVEL, STADING SOLVENT colde, MOIST.		
4	+			DARK becar to black, poorly screed, clayer fine to med. SAND w/ TR. GRAVEL, STRONG ODOR, MOIST.		
5-	3 3	0.0	535A 1230	Reddish brown, well souted, for sand w/ tr. Medi-cr.		
6				SAIRO, STRONG SOLVENT OCLUR, MUIST,		
+	+					
フナ	+					
¥ +				Buff, interbedded, well souted silt And well souted		
' +	+			VF-FN SAIND, hor. laminated, slight solvent odge moist		
9 +	士			silt, day sand.		
10	4 3	0.0	585B 1245	Buff, well sceted, if sand, slight solvent odor, day.		
<i>,,</i> _	+					
+	+					
12						
13 —						
+	+					
14	, a	12	<u>ر د</u>			
15	江	0.0	585C 1300			
13 +	_			End of Boeing 15.0'		
+	+					
+			(

Project Swite Tarkstries Owner Swite Tarkstries Cocation Rock ford, IL W.O.Number 9155 JK Corenole Number 586 Total Depth 16,0' Diameter 512' Drilling Company Raimounds Dailling Orilling Method 314' I.D. HS-August Sampling Method 2"x2" Salt Sampling By D.P. Edwark Date Orilled 7-24-89
Color, Textures
Asphalt I mak become, poorly scretcel, clayer force sand w/ tence for & cr gravel, sticky, solvent odor. 2 —
- Encountered concrete structure (tank saddle) or fill DARK BROWN, poorly sorted, losse, fu-cr sand w/terce fus cr gravel interbedded with clark brown clay, this laminar, sticky, strong solvent odor, moist, (Fill)
No RECOVERY, perbably muré fill.
Light beowy, Mod. well scated, deuse, for - of sand, horizontally 19 19 19 19 19 19 19 19 10 10
18 32 5 End of Boxing 16.0'

	RTH CENTR		C Tradustries owner Sunter Tradustries		
Document Pork ford IL 4.0. Number 9155. TK					
- i	le Number				
}			FPM-N.C. Drilling Method 3" HANN Auged		
	-		" Hard Augel Log By D. P. Edwards Date Orilled 7-25-89		
	.,		7 63-07		
=	ر د ا	e ii	DESCRIPTION/SOIL CLASSIFICATION		
ря	HALL (Vppm)	Samp	Color, Texture, Structures		
/			hight brown, mod. well sogted, for-ned sand u/ to uf sand and cr. grave, no becking, no odor, wet (backfill).		
2 — —			GRAY, poolly sorted, for med said, w/ tr. of said & cr. gravel, no bedding, v. strong solvent oclar, only sheep, moist. (Fill)		
3 - +			Suesp moisi. (TIII)		
5-2-3	49/	855			
6 + +					
7 →					
8			- Execuster piece of wood		
9 + +		-			
10 3 4	801	0457	Buff, well socted, vf-fw sand, v. strong solvent odor,		
/, 			B. F. well souted, s. It interbedhed of well souted, vf- for sand, v. steams solvent odde, day.		
12			End of Boring 11.3' due to Auger REfusal.		
13 — —					
14++					
15++					
+ +					

Project Surfec Tarkstees Description Rock ford II w.O. Number 9155 JK Porenoise Number 588 Total Depth 16,0 Diameter 5½ Drilling Company Rainwords Drilling Description Drilling Method 3½ I.D. H5-August Sampling Method 2"x2" Split Sampling By D. P. Edwards Date Orilled 7-25-89						
SAMPLE RECORDS	HAFT (NOCK)	Sample	Color. Texture, Structures			
2 —			Light brown, mod. sorted, for-ned sand w/ tr. cr. gravel, NO bedding, NO odor, Wet (backfill). Light reddish brown, Well sorted, loose, for sand, NO			
3 - 4		915	Light Reddish brown, WELL souted, loose, for sand, No bedding, occ. FEOx staining, occ. dark beaun spots, No odor, day,			
5 3 4	42	5884 9.				
8			Light brown (buff), well socted, med dense, for sand hoe. IAMINATED INTERBEDGED with light gray silt, solvent odul, moist.			
10 18 18 19 34	8//	5880 925	Buff & gerevish gray, medium dense-clause, silt interbedded			
13			with it & for sand, horizontally laminated, solvent odor, moist.			
14 18 30 15 £ 42 55	126	SB8C 935				
18			End of Boeing 16.0'			

ERH-MORTH CENTRAL,	INC. ORILLING LOG
	Ixhistories owner Suntec Industries
Location <u>Rocks</u>	Field. IL 4.0. Number 9155 JK
Sarenois Number	$\frac{589}{2}$ fotal Depth $\frac{16.0^{\circ}}{2}$ Diameter $\frac{5\%}{2}$
Orilling Company /	RAIMOUNDE DRIVING Drilling Method 34" I.D. HS-August
Sampling Method <u>C</u>	"x2' Solt Samuel By D.P. Edward Date Orilled 7-25-89
· 	
- 12 m	DESCRIPTION/SOIL CLASSIFICATION
CEPTH CAMPIC CAMPINE CAMPIN	Color, Texture, Structures
NR -	
	Asphalt
/ - +	GRAY, pooly souted, for-med sand u/ some for er years, NO bedding, NO odow, dry (Aggregate Base).
2 — —	
	HED SAND W/ TE FU & CR CRAIS DEPARTS OFFICE FEOX
3 🛨	DARK brown, poorly sorted, med. clense, clayer fu- HED. SAND W/ TR. FN. & CR. GRAVE) DEGANIC ONDER, FEOX STAINING, Oil staining, day (Fill).
	J. 7
4 6 5	
3 16 2	Light REOdish brown, NET SORTED, HEDIUM DENSE, fis SAND
6 26 3	Light reddish brown, well sorted, medium derse, for sand, NU bedding, NO odde, occ. FEOX staining, day.
+ +	
7十十	
+ +	Light because well speted loss of and 111
8 + +	Light beown, well socied, loose, of sand, no bedding,
9 5 - 0	
13 15	Light beown, well souted, used dowe for sound known to
10 3 10 0 8	bedding, No odor, day.
18 0 685	Light beown, vell scated, used dense, for sand, horizontal bedding, no odor day. Light beown, med dense, well scated of sand interbedled with silt, hor laminated, no odor, dry sand moist silt.
	with Sill, lock laminated, No oclor, dry sand moist silt
/2	THE WELL SORIED MED, CLENSE, IN SAND hol soutall
+ +	040, 511,
13++	Light Reddish brown dense, well sorted silt interbedded
	Light Reddish brown dense, well souted silt interbedded with for it of sand, well souted horizontally bedded, oce. FEOX staining, NO odde, dry sand, moist silt.
14 6 00	oce. FEUX staining, No odde, dry sand, moist silt.
15 25 0	
1 37 0 28	
16 30 3	End of Boeing 16.0'
+ +	LIM of Doerry 10.0

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82422

Sample Description:

B-1-C; B-1

Suntec

Date Taken: 05-23-89 1600

Date Received: 05-25-89 1445

Solids, Total

85.92

ક્ષ

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche
ERM-NORTH CENTRAL, INC.
102 Wilmot Road, Suite 300
Deerfield IL 60015

06-13-89

Sample No.: 82422

Sample Description: B-

B-1-C; B-1

Suntec

Date Taken: 05-23-89 1600

Date Received: 05-25-89 1445

VOLATILE COMPOUNDS

Acrolein	<10.	ug/g
Acrylonitrile	<10.	ug/g
Benzene	<1.0	ug/g
Bromodichloromethane	<1.0	ug/g
Bromoform	<1.0	ug/g
Bromomethane	<10.	ug/g
Carbon tetrachloride	<1.0	ug/g
Chlorobenzene	<1.0	ug/g
Chiloroethane	<10.	ug/g
2-Chloroethylvinyl ether	<1.0	ug/g
Chloroform	<1.0	ug/g
Chloromethane	<10.	ug/g
Dibromochloromethane	<1.0	ug/g
1,2-Dichlorobenzene	<1.0	ug/g
1,3-Dichlorobenzene	<1.0	ug/g
1,4-Dichlorobenzene	<1.0	ug/g
1,1-Dichloroethane	<1.0	ug/g
1,2-Dichloroethane	<1.0	ug/g
1,1-Dichloroethene	<1.0	ug/g
cis-1,2-Dichloroethene	<1.0	ug/g
trans-1,2-Dichloroethene	<1.0	ug/g
1,2-Dichloropropane	<1.0	ug/g
cis-1,3-Dichloropropene	<1.0	ug/g
trans-1,3-Dichloropropene	<1.0	ug/g
Ethyl benzene	<1.0	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300

Deerfield IL 60015

06-13-89

Sample No.: 82422

Sample Description:

B-1-C; B-1

Suntec

Date Taken: 05-23-89 1600

Date Received: 05-25-89 1445

Methylene chloride	<5.0	ug/g
1,1,2,2-Tetrachloroethane	<1.0	ug/g
Tetrachloroethene	<1.0	ug/g
Toluene	<1.0	ug/g
1,1,1-Trichloroethane	<1.0	ug/g
1,1,2-Trichloroethane	<1.0	ug/g
Trichloroethene	<1.0	ug/g
Trichlorofluoromethane	<1.0	ug/g
Vinyl chloride	<10.	ug/g
Xylenes, Total	<1.0	ug/g
Isopropanol	<10.	ug/g

Results on a dry weight basis.

Tel: (312) 289-3100 Fax: (312) 289-4180

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82423

Sample Description:

B-2-B; B-2

Suntec

Date Taken: 05-23-89 1640

Date Received: 05-25-89 1445

Solids, Total

81.20

¥

Results on a dry weight basis.

NET Midwest Bartlett Divis 850 West Bart Bartlett, IL 60

Tel: (312) 289 Fax: (312) 28

ANALYTICAL REPORT

Mr. Mike Roche
ERM-NORTH CENTRAL, INC.
102 Wilmot Road, Suite 300

06-13-89

Sample No.: 82423

Deerfield IL 60015

Sample Description: B-2-B; B-2

Suntec

Date Taken: 05-23-89 1640

Date Received: 05-7

VOLATILE COMPOUNDS

Acrolein	<10.	ug/g
Acrylonitrile	<10.	u g /g
Benzene	<1.0	ug/g
Bromodichloromethane	<1.0	ug/g
Bromoform	<1.0	ug/g
Bromomethane	<10.	ug/ g
Carbon tetrachloride	<1.0	u g /g
Chlorobenzene	<1.0	u g /g
Chloroethane	<10.	u g /g
2-Chloroethylvinyl ether	<1.0	u g /g
Chloroform	<1.0	u g /g
Chloromethane	<10.	u g /g
Dibromochloromethane	<1.0	u g /g
1,2-Dichlorobenzene	<1.0	ug/g
1,3-Dichlorobenzene	<1.0	ug /g
1,4-Dichlorobenzene	<1.0	ug /g
1,1-Dichloroethane	<1.0	u g /g
1,2-Dichloroethane	<1.0	ug /g
1,1-Dichloroethene	<1.0	ug /g
cis-1,2-Dichloroethene	<1.0	ug /g
trans-1,2-Dichloroethene	<1.0	ug /g
1,2-Dichloropropane	<1.0	ug /g
cis-1,3-Dichloropropene	<1.0	ug /g
trans-1,3-Dichloropropene	<1.0	ug /g
Ethyl benzene	<1.0	ug /g
-		3, 3

Results on a dry weight basis.

NET Midwest. Bartlett Division 850 West Bart Bartlett, IL 60° Tel: (312) 289

Fax: (312) 289

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC.

102 Wilmot Road, Suite 300 Deerfield IL 60015

06-13-89

Sample No.: 82423

Sample Description: B-2-B; B-2 Suntec

Date Received: 05-2 Date Taken: 05-23-89 1640

<5.0	ug/g
<1.0	ug/g
<1.0	ug/g
<1.0	ug/g
<1.0	ug/g
<1.0	·ug/g
<1.0	ug/g
<1.0	ug/g
<10.	ug/g
<1.0	ug/g
<10.	ug/g
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

Results on a dry weight basis.

NET Midwest Bartlett Divisi 850 West Bart Bartlett, IL 60

Tel: (312) 289 Fax: (312) 285

ANALYTICAL REPORT

Mr. Mike Roche ERM-NORTH CENTRAL, INC. 102 Wilmot Road, Suite 300 Deerfield IL 60015 06-13-89

Sample No.: 82424

Sample Description:

B-3-D; B-3

Suntec

Date Taken: 05-24-89 1150

Date Received: 05-2

Solids, Total

87.54

ક્ર

Results on a dry weight basis.